PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coupled electric fields in photorefractive driven liquid crystal hybrid cells : theory and numerical simulation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In cyclic articles previously published we described and analysed self-organized light fibres inside a liquid crystalline (LC) cell contained photosensitive polymer (PP) layer. Such asymmetric LC cell we call a hybrid LC cell. Light fibre arises along a laser beam path directed in plane of an LC cell. It means that a laser beam is parallel to photosensitive layer. We observed the asymmetric LC cell response on an external driving field polarization. Observation has been done for an AC field first. Itis the reason we decided to carry out a detailed research for a DC driving field to obtain an LC cell response step by step. The properly prepared LC cell has been built with an isolating layer and garbage ions deletion. We proved by means of a physical model, as well as a numerical simulation hat LC asymmetric response strongly depends on junction barriers between PP and LC layers. New parametric model for a junction barrier on PP/LC boundary has been proposed. Such model is very useful because of lack of proper conductivity and charge carriers of band structure data on LC material.
Słowa kluczowe
Twórcy
  • Institute of Computer Science, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Institute of Computer Science, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Institute of Computer Science, Military University of Technology, ul. Kaliskiego 2, 00–908 Warsaw, Poland
Bibliografia
  • 1. P. Pagliusi, R. Macdonald, S. Busch, G. Cipparrone, and M. Kreuzer, “Nonlocal dynamic gratings and energy transfer by optical two-beam coupling in a nematic liquid crystal owing to highly sensitive photoelectric reorientation”, JOSA B, 18, 1632–1638 (2001).
  • 2. D.C. Jones and G. Cook, “Theory of beam coupling in a hybrid photorefractive-liquid crystal cell”, Opt. Commun. 232, 399–409 (2004).
  • 3. F. Yao, Y. Pei; Yu Zhang, J. Zhang, C. Hou, and X. Sun, “High-resolution photorefractive gratings in nematic liquid crystals sandwiched with photoconductive polymer film”, Appl. Phys. B-Lasers O 92, 573 (2008).
  • 4. A. Walczak and E. Nowinowski-Kruszelnicki ,“Waveguide couplers induced optically over organic junction”, Opt. Eng. 47, 035402 (2008).
  • 5. M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I.C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers”, J. Appl. Phys. 96, 2616 (2004).
  • 6. A. Walczak, P. Moszczyński, and E. Nowinowski-Kruszelnicki, “Semiconductor-LC layer boundary and photonic structures”, Mol. Cryst. Liq. Cryst. 559, 186–193 (2012).
  • 7. P. Moszczyński, A. Walczak, and P. Marciniak, “Model for simulations of photo-induced charge inside the hybrid LC cell”, Phot. Lett. Poland 5, 11–13 (2013).
  • 8. P. Moszczyński and A. Walczak, “Analysis and model of the photorefractive-like effect in non-conductive asymmetric liquid crystal hybrid cell”, Phot. Lett. Poland 7, 72–74 (2015).
  • 9. A. Brignon, I. Bongrand, B. Loiseaux, and J.P. Huignard, “Signal-beam amplification by two-wave mixing in a liquid-crystal light valve”, Opt. Lett. 22, 1855 (1997).
  • 10. G. Cook, C.A. Wyres, M.J. Deer, and D.C. Jones,“Hybrid organic-inorganic photorefractives”, Liquid Crystals VII, SPIE Annual Meeting (2003).
  • 11. F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer–liquid-crystal structures”, Appl. Phys. Lett. 74, 2924 (1999).
  • 12. S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer–nematic liquid crystal hybrid structures”, Opt. Commun. 187, 257–261 (2001).
  • 13. A. Walczak, “Soliton like solutions and subsurface behaviour of the nematic layer”, Proc. SPIE 4759, 327–331 (2001).
  • 14. N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals”, Ferroelectrics 22, 949 (1979).
  • 15. N. Kukhtarev and T. Kukhtareva, “A unified treatment of radiation-induced photorefractive, thermal, and neutron transmutation gratings”, Proc. IEEE 87, 1857–1869 (1999).
  • 16. J.S. Schildkraut and Y. Cui, “Zero-order and first order theory of the formation of space-charge gratings in photoconductive polymers”, J. Appl. Phys. 72, 5055–5060 (1992).
  • 17. J.S. Schildkraut and A.V. Buettner, “Theory and simulation of the formation and erasure of space-charge gratings in photo-conductive polymers”, J. Appl. Phys. 72, 1888–1893 (1992).
  • 18. A. Twarowski, “Geminate recombination in photorefractive crystals”, J. Appl. Phys., 65 2833–2837 (1989).
  • 19. W.D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole”, J. Appl. Phys. 43, 5033–5039 (1972).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc23c8c5-4e99-4fa1-bbb6-fa8bdee6a0d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.