PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection and Recognition of Environmental Sounds by Musicians and Non-Musicians

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article reports three experiments conducted to determine whether musicians possess better ability of recognising the sources of natural sounds than non-musicians. The study was inspired by reports which indicate that musical training develops not only musical hearing, but also enhances various non-musical auditory capabilities. Recognition and detection thresholds were measured for recordings of environment al sounds presented in quiet (Experiment 1) and in the background of a noise masker (Experiment 2). The listener’s ability of sound source recognition was inferred from the recognition-detection threshold gap (RDTG) defined as the difference in signal level between the thresholds of sound recognition and sound detection. Contrary to what was expected from reports of enhanced auditory abilities of musicians, the RDTGs were not smaller for musicians than for non-musicians. In Experiment 3, detection thresholds were measured with an adaptive procedure comprising three interleaved stimulus tracks with different sounds. It was found that the threshold elevation caused by stimulus interleaving was similar for musicians and non-musicians. The lack of superiority of musicians over non-musicians in the auditory tasks Explorer in this study is explained in terms of a listening strategy known as casual listening mode, which is a basis for auditory orientation in the environment.
Rocznik
Strony
581--592
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
  • Chair of Musical Acoustics, Department of Sound Engineering, The Fryderyk Chopin University of Music, Okólnik 2, 00-368 Warszawa, Poland
  • Chair of Musical Acoustics, Department of Sound Engineering, The Fryderyk Chopin University of Music, Okólnik 2, 00-368 Warszawa, Poland
autor
  • Institute of Radioelectronics and Multimedia Technology, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland
autor
  • Chair of Musical Acoustics, Department of Sound Engineering, The Fryderyk Chopin University of Music, Okólnik 2, 00-368 Warszawa, Poland
  • Chair of Musical Acoustics, Department of Sound Engineering, The Fryderyk Chopin University of Music, Okólnik 2, 00-368 Warszawa, Poland
Bibliografia
  • 1. Abouchacra K., Łętowski T., Gothie J. (2007), Detection and recognition of natural sounds, Archives of Acoustics, 32, 3, 603-616.
  • 2. Andringa T., Pals C. (2009), Detection and recognition threshold of sound sources in noise, Proceedings of the 31st Annual Conference of the Cognitive Science Society, CogSci09, pp. 1798-1803.
  • 3. Bogusz-Witczak E., Skrodzka E., Turkowska H. (2015), Influence of musical experience of blind and visually impaired young persons on performance in selected auditory tasks, Archives of Acoustics, 40, 3, 337-349.
  • 4. Carello C., Anderson K. L., Kinkler-Peck A. J. (1998), Perception of object length by sound, Psychological Science, 9, 211-214.
  • 5. Chan A. S., Ho Y. C., Cheung M. C. (1998), Music training improves verbal memory, Nature, 396, 128.
  • 6. Chartrand J.-P., Belin P. (2006), Superior voice timbre processing in musicians, Neuroscience Letters, 405, 164-167.
  • 7. Chion M. (1994), Audio-vision: Sound on screen, Columbia University Press, New York.
  • 8. Fechner G. T. (1860), Elemente der Psychophysik, Breitkopf & Härterl, Leipzig.
  • 9. Fine P. A., Moore B. C. J. (1993), Frequency analysis and musical ability, Music Perception, 11, 39-53.
  • 10. Fluitt K., Gaston J., Karna V., Letowski T. (2010), Feasibility of audio training for identification of auditory signatures of small arms fire, Report ARLTR-5413, Army Research Laboratory, Aberdeen, MD.
  • 11. Gaver W. W. (1993a), What in the worlds do we hear? An ecological approach to auditory event perception, Ecological Psychology, 5, 1-29.
  • 12. Gaver W. W. (1993b), How do we hear in the world? Explorations in ecological acoustics, Ecological Psychology, 5, 285-313.
  • 13. Green D. M., Swets J. A. (1966), Signal detection theory and psychophysics, New York: Wiley.
  • 14. Gygi B. (2001), Factors in the identification of environmental sounds, Doctoral dissertation, Department of Psychology, Indiana University.
  • 15. Gygi B., Kidd G. R., Watson C. S. (2007), Similarity and categorization of environmental sounds, Perception and Psychophysics, 69, 839-855.
  • 16. Herholz S. C., Boh B., Pantev C. (2011), Musical training modulates encoding of higher-order regularities in the auditory cortex, European Journal of Neuroscience, 34, 524-529.
  • 17. Jakobson L., Cuddy L., Kilgour A. (2003), Time tagging: A key to musicians’ superior memory, Music Perception, 20, 307-213.
  • 18. Lakatos S., McAdams S., Caussé R. (1997), The representation of auditory source characteristics: Simple geometric form, Perception and Psychophysics, 59, 1180-1191.
  • 19. Lee Y., Lu M., Ko H. (2007), Effects of skill training on working memory capacity, Learning and Instruction, 17, 336-344.
  • 20. Leek M. R., Watson C. S. (1984), Learning to detect auditory pattern components, Journal of the Acoustical Society of America, 76, 1037-1044.
  • 21. Levitt H. (1971), Transformed up-down methods in psychoacoustics, Journal of the Acoustical Society of America, 49, 467-477.
  • 22. Macmillan N. A., Creelman C. D. (2005), Detection theory: a user’s guide, 2nd Ed., Lawrence Erlbaum Associates, Mahwah, New Jersey.
  • 23. Miśkiewicz A., Letowski T. (2014), Timbre Solfege training in automotive industry, Proceedings of the 7th Forum Acusticum, Kraków.
  • 24. Musacchia G., Sams M., Skoe E., Kraus N. (2007), Musicians have enhanced subcortical auditory and audiovisual processing of speech and music, Proceedings of the National Academy of Sciences, 104, 15894-15898.
  • 25. Myers L. L., Letowski T. R., Abouchacra K. S., Kalb J. T., Haas E. C. (1996), Detection and recognition of octave-band sound effects, Journal of the American Academy of Audiology, 7, 346-357.
  • 26. Oxenham A. J., Fligor B. J., Mason C. R., Kidd G., Jr. (2003), Informational masking and musical training, Journal of the Acoustical Society of America, 114, 1543-1549.
  • 27. Pantev C., Ross B., Fujioka, T., Trainor L. J., Schutte M., Schulz M. (2007), Music and learning-induced cortical plasticity, Annals of the New York Academy of Sciences, 999, 438-450.
  • 28. Parbery-Clark A., Skoe E., Lam C., Kraus N. (2009), Musician enhancement for speech in noise, Ear and Hearing, 30, 653-661.
  • 29. Pastore R. E., Flint J. D., Gaston J. R., Solomon M. J. (2008), Auditory event perception: the source – perception loop for posture in human gait, Perception and Psychophysics, 70, 13-29.
  • 30. Preis A., Klawiter A. (2005), The audition of natural sounds – its levels and relevant experiments, Proceedings of Forum Acusticum, Kraków, pp. 1595-1599.
  • 31. Rościszewska T., Miśkiewicz A., Żera J., Majer J., Okoń-Makowska B. (2016), Detection and recognition thresholds of environmental sounds, [in:] Advances in Acoustics, M. Meissner [Ed.], Polish Acoustical Society, Warsaw Division, Warszawa, pp. 257-268.
  • 32. Schaeffer P. (1966), Traité des objets musicaux, Editions du Seuil, Paris.
  • 33. Scharf B. (1998), Auditory attention: The psychoacoustical approach, [in:] Attention, H. Pashler [Ed.], Psychology Press, Hove, pp. 75-118.
  • 34. Scharine A., Letowski T., Mermagen T., Henry P. (2010), Learning to detect and identify acoustic environments from reflected sound, Military Psychology, 22, 24-40.
  • 35. Strait D. L., Kraus N., Parbery-Clark A., Ashley R. (2010), Musical experience shapes top-down auditory mechanisms: Evidence from masking and auditory attention performance, Hearing Research, 261, 22-29.
  • 36. Tuuri K., Mustonen M.-S., Pirhonen A. (2007), Same sound – different meanings: A novel scheme for modes of listening, Proceedings of Audio Mostly, Fraunhofer Institute for Digital Media Technology IDMT, pp. 13-18.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-094513e3-7b0d-4039-9414-aa7629af6f30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.