PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental evaluation of the effects of structural changes on the vibration properties of ck35 steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The microstructure of some components which operate in high-temperature conditions (e.g. boiler components, turbine blades used in gas power plants, jet engines and reactors) is subjected to changes in long run, which leads to a degradation in the mechanical properties of these components and consequently, reduces their lifecycle. Therefore, it is so useful to detect the changes in the microstructure of these parts during their operation, employing an easy, fast and non-destructive method to determine their remaining life. In this study, we evaluate the effects of the microstructural changes on natural frequencies and the damping coefficient of CK35 steel, employing the experimental modal test. We aim to use the method for power plant components, if it has significant effects. To do so, we applied spheroidization heat treatment on CK35 steel samples having a primary structure of ferrite-pearlite for 24 and 48 hours. Then, we carried out the experimental modal test on samples having different metallurgical structures, but with the same dimensions and weights. According to the findings, the spherical ferrite-carbide particles in the ferrite structure increase the natural frequencies and damping coefficient. These tests show that the structural changes in this type of steel result in slight changes in the values of natural frequencies; however, it significantly changes the damping frequencies.
Rocznik
Strony
53--57
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, University of Tehran, 16th Azar St., Enghelab Sq., Tehran
Bibliografia
  • 1. Abedrabbo N., Pourboghrat F., Carsley J. (2006), Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models, Internatio-nal Journal of Plasticity, 23, 841–875.
  • 2. Bandara, C. S., Siriwardane, S. .C., Dissanayake, U. I., & Dissanayake, R. (2016), Full range S–N curves for fatigue life evaluation of steels using hardness measurements, International journal Journal of fatigueFatigue, 82, 325-331.
  • 3. Akhil Bhardwaj A., Naishadh Gohil N., Amit Kumar Gupta A.K., S.S. Satheesh KumarK.S.S. (2021), An experimental investigation on the influence of elevated-temperature constrained groove pressing on the microstructure, mechanical properties and hardening behaviour of Ti6Al4V alloy, Materials Science and Engineering, Volume 802., 20 January 2021, 140651
  • 4. Bolkowski S., Stabrowski M., Skoczylas J., Sroka J., Sikora J., Wincenciak S. (1993), Komputerowe metody analizy pola elektromagnetycznego, WNT, Warszawa.
  • 5. Cai, W., Lu, X. L., & Zhao, L. C. (2005), Damping behavior of TiNi-based shape memory alloys, Materials Science and Engineering: A, 394 (1-2), 78-82.
  • 6. V.H. Carneiro V.H., H. Puga. H. (2018), Solution Treatment Enhances Both Static and Damping Properties of Al–Si–Mg alloys, Metall Mater Trans, 5942–5945.
  • 7. V.H. Carneiro V.H., H. Puga. H. (2019), T6 Heat Treatment Impact on the Random Frequency Vibration Stress of Al–Si–Mg Alloys. Met. Mater. Int, 25, 880-887.
  • 8. V.H. Carneiro V.H., H. Puga H., J. Meireles, J. (2018), Heat treatment as a route to tailor the yield-damping properties in A356 alloys, Materials Science and Engineering 729, 1-8.
  • 9. Chandler, H. (Ed.). (1994), Heat treater's guide: practices and procedures for irons and steels, ASM international.
  • 10. Diehl, A., Engel, U. &, Geiger, M. (2010), Influence of microstructure on the mechanical properties and the forming behaviour of very thin metal foils, Int J Adv Manuf Technol, 47, 57-61
  • 11. El-Morsy, A. W., & Farahat, A. I. (2015), Effect of aging treatment on the damping capacity and mechanical properties of Mg-6al-1Zn alloy, The Scientific World Journal, Volume 2015 ,pages 1-8, https://doi.org/10.1155/2015/170458
  • 12. Fu, Z. F., & He , J. (2001), Modal analysis, Elsevier.
  • 13. S. Ghorbanhosseini S, ., F. Fereshteh-Saniee F., A. Sonboli. A. (2020), An experimental investigation on the influence of elevatedtemperature constrained groove pressing on the microstructure, mechanical properties, anisotropy and texture of 2024 Al sheets, Journal of Alloys and Compounds, 817, 152763
  • 14. Ghosh, S. K., & Mondal, S. (2008), High temperature ageing behaviour of a duplex stainless steel, Materials Characterization, 59(12), 1776-1783.
  • 15. Goshima T., Hanson M.T., Keer L.M. (1990), Three-dimensional analysis of thermal effects on surface crack propagation in rolling contact, Journal of Thermal Stresses, Vol. 13, 237-261.
  • 16. Hamisi, M.,Torshizi, S. (2018), Experimental Study of Aging Effect on Mechanical and Vibrational Properties on Carbon Steel Sa516, Modares Mechanical Engineering , Vol 18, 50-55.
  • 17. Korznikova, G., Kabirov, R., Nazarov, K. et al. (2020), Influence of Constrained High-Pressure Torsion on Microstructure and DOI 10.2478/ama-2021-0008 acta mechanica et automatica, vol.15 no.2 (2021) 57 Mechanical Properties of an Aluminum-Based Metal Matrix Composite, JOM, (72), 2898–2911.
  • 18. Limarga, A. M., Duong, T. L., Gregori, G., & Clarke, D. R. (2007), High temperature vibration damping of thermal barrier coating materials. Surface and Coatings Technology, 202(4-7), 693- 697.
  • 19. Lin, S. C., Lui, T. S., Chen, L. H., & Song, J. M. (2002), Effect of pearlite on the vibration-fracture behavior of spheroidal graphite cast irons under resonantconditions, Metallurgical and Materials Transactions A, 33(8), 2623-2634.
  • 20. Shaojun LiuL., Qunying HuangH., Lei PengP., Yanfen LiL., Chunjing Li. (2012), Microstructure and its influence on mechanical properties of CLAM stee, Fusion Engineering and Design: A, 89(9), 1628-1632.
  • 21. Totten, G. E. (2006), Steel Heat Treatment Handbook, 2 Volume Set. CRC press.
  • 22. Tsai, M. H., Chen, M. S., Lin, L. H., Lin, M. H., Wu, C. Z., Ou, K. L., & Yu, C. H. (2011), Effect of heat treatment on the microstructures and damping properties of biomedical Mg–Zr alloy, Journal of Alloys and Compounds, 509(3), 813-819.
  • 23. Visnapuu, A., Nash, R. W., & Turner, P. C. (1987), “Damping properties of elected steels and cast irons., UNITED STATES DEPARTMENT OF THE INTERIOR
  • 24. Xiao-Feng Wang X-F, Tong-Ya Shi T-Y, He-Bin Wang H-B, SongZe Zhou S-Z, Wen-Fei Peng W-F, Yong-Gang Wang. Y-G (2020), Effects of strain rate on mechanical properties, microstructure and texture of Al—Mg—Si—Cu alloy under tensile loading, , Transactions of Nonferrous Metals Society of China, 30(1), 27-40.
  • 25. Yamada, T., Okano, S., & Kuwano, H. (2006), Mechanical property andmicrostructural change by thermal aging of SCS14A cast duplex stainless steel, Journal of Nuclear Materials, 350(1), 47-55.
  • 26. Zhang, Z., Zeng, X., & Ding, W. (2005), The influence of heat treatment on damping response of AZ91D magnesium alloy, Materials Science and Engineering: A, 392(1-2), 150-155.
  • 27. Zieliński, A., Golański, G., & Sroka, M. (2017), Influence of longterm ageing on the microstructure and mechanical properties of T24 steel, Materials Science and Engineering: A, 682, 664-672.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5327245a-f80f-4f25-90be-019ab22dec6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.