PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radicals initiated by gamma rays in selected amino acids and collagen

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Calf skin collagen and three amino acids essential for its structure, namely glycine, L-proline and 4-hydroxyl-L-proline, were irradiated with gamma rays up to a dose of 10 kGy. Conversion of radicals over time or after thermal annealing to selected temperatures was monitored by X-band electron paramagnetic resonance (EPR) spectroscopy. Some experimental spectra were compared with signals simulated based on literature data from the electron nuclear double resonance (ENDOR) studies. The following phenomena were confi rmed in the tested amino acids: abstraction of hydrogen atom (glycine, proline, hydroxyproline, collagen), deamination (glycine, hydroxyproline), decarboxylation (hydroxyproline). Chain scission at glycine residues, radiation-induced decomposition of side groups and oxidative degradation were observed in irradiated collagen. The decay of radicals in collagen saturated with water occurred at lower temperatures than in macromolecules having only structural water. The paramagnetic centres were the most stable in an oxygen-free atmosphere (vacuum). Radical processes deteriorated the structure of collagen; hence, radiation sterilization of skin grafts requires careful pros and cons analysis.
Czasopismo
Rocznik
Strony
11--17
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • Institute of Nuclear Chemistry and Technology 16 Dorodna St., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology 16 Dorodna St., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology 16 Dorodna St., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology 16 Dorodna St., 03-195 Warsaw, Poland
Bibliografia
  • 1. Samsell, B. J., & Moore, M. A. (2012). Use of controlled low dose gamma irradiation to sterilize allograft tendons for ACL reconstruction: biomechanical and clinical perspective. Cell Tissue Bank., 13, 217–223. doi.org/10.1007/s10561-011-9251-7.
  • 2. Balsly, C. R., Cotter, A. T., Williams, L. A., Gaskins, B. D., Moore, M. A., & Wolfi nbarger Jr., L. (2008).Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts. Cell Tissue Bank., 9, 289–298. doi.org/10.1007/s10561-008-9069-0.
  • 3. Greaves, L. L., Hecker, A. T., & Brown, C. H. (2008).The effect of donor age and low-dose gamma irradiation on the initial biomechanical properties of human tibialis tendon allografts. Am. J. Sports Med., 36, 1358–1366. doi.org/10.1177/0363546508314394.
  • 4. Singh, R., Singh, D., & Singh, A. (2016). Radiation sterilization of tissue allografts: A review. World J. Radiol., 8, 355–369. doi.org/10.4329/wjr.v8.i4.355.
  • 5. Leroy, M., Labbé, J. F., Ouellet, M., Jean, J., Lefèvre, T., Laroche, G., Auger, M., & Pouliot, R. (2014). A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy. Acta Biomater., 10, 2703–2711. doi.org/10.1016/j.actbio.2014.02.007.
  • 6. Pietrucha, K. (2015). Physicochemical properties of 3D collagen-CS scaffolds for potential use in neural tissue engineering. Int. J. Biol. Macromol., 80, 732–739. doi.org/10.1016/j.ijbiomac.2015.07.005.
  • 7. Madison, S. A., McCallum, J. E. B., & Rojas-Wahl, R. U. (2002). Hydroperoxide formation in model collagens and collagen type I. Int. J. Cosm. Sci., 24, 43–52. doi.org/10.1046/j.0412-5463.2001.00114.x.
  • 8. Davies, M. J. (2016). Protein oxidation and peroxidation. Biochem. J., 473, 805–825. doi.org/10.1042/BJ20151227N.
  • 9. Szpak, P. (2011). Fish bone chemistry and ultrastructure: Implications for taphonomy and stable isotope analysis. J. Arch. Sci., 38(12), 3358–3372.doi: 10.1016/j.jas.2011.07.022.
  • 10. Chipara, M., Reyes-Romero, J., Ignat, M., Constantinescu, B., & Secu, C. (2003). ESR studies on collagen irradiated with protons. Polym. Degrad. Stab., 80,45–49. doi.org/10.1016/S0141-3910(02)00381-6.
  • 11. Bowes, J. H., & Moss, J. A. (1962). The effect of gamma radiation on collagen1. Radiat. Res., 16, 211–223. doi.org/10.2307/3571153.
  • 12. Syrstad, E. A., & Tureček, F. J. (2005). Toward a general mechanism of electron capture dissociation. Am. Soc. Mass Spectr., 16, 208–224. doi.org/10.1016/j.jasms.2004.11.001.
  • 13. Symons, M. C. R. (1996). Radicals generated by bone cutting and fracture. Free Rad. Biol. Med., 20(6), 831–835.
  • 14. Smith, G. J. (1995). New trends in photobiology. Photodegradation of keratin and other structural proteins. J. Photochem. Photobiol. B-Biol., 27, 187–198. doi.org/10.1016/1011-1344(94)07104-V.
  • 15. Nomura, S., Hiltner, A., Lando, J. B., & Baer, E. (1977). Interaction of water with native collagen. Biopolym. J., 16, 231–246. doi.org/10.1002/bip.1977.360160202.
  • 16. Gauza-Włodarczyk, M., Kubisz, L., & Włodarczyk, D. (2017). Amino acid composition in determination of collagen origin and assessment of physical factors effects. Int. J. Biol. Macromol., 104, 987–991. doi.org/10.1016/j.ijbiomac.2017.07.013.
  • 17. Dziedzic-Goclawska, A., Kaminski, A., Uhrynowska-Tyszkiewicz, I., & Stachowicz, W. (2005). Irradiation as a safety procedure in tissue banking. Cell Tissue Bank., 6, 201–219. doi.org/10.1007/s10561-005-0338-x.
  • 18. Ciesielska, B., Schultka, K., Penkowski, M., & Sagstuen, E. (2004). EPR study of light illumination effects on radicals in gamma-irradiated L-alanine. Spectrochim. Acta Part A, 60, 1327–1333. doi:10.1016/j.saa.2003.10.030.
  • 19. Ban, F., Gauld, J. W., & Boyd, R. J. (2000). Theoretical studies of the radiation products of hydroxyproline. J. Phys. Chem. A, 104, 8583–8592. doi.org/10.1021/jp001692g.
  • 20. Aboelezz, E., & Hassan, G. M. (2018). Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose. Radiat. Phys. Chem., 145, 5–10. doi.org/10.1016/j.radphyschem.2017.12.006.
  • 21. Sanderud, A., & Sagstuen, E. J. (1998). EPR and ENDOR studies of single crystals of α-glycine X-ray irradiated at 295 K. J. Phys. Chem. B, 102, 9353–9361.doi.org/10.1021/jp982932j.
  • 22. Aydin, M., & Osmanoglu, Y. E. (2011). EPR study nof free radicals in amino acids derivatives by gamma rays. Rom. J. Phys., 56, 1156–1161. doi.org/10.1016/j.msec.2017.06.012.
  • 23. Kornacka, E. M., Przybytniak, G., & Zimek, Z. (2018). Radicals initiated by gamma-rays in collagenand its main components. Radiat. Phys. Chem.,142, 4–8.
  • 24. Brustolon, M., Chis, V., & Maniero, A. L. (1997). New radical detected by HF-EPR, ENDOR, and pulsed nEPR in a room temperature irradiated single crystal of glycine. J. Phys. Chem. A, 101, 4887–4892. doi.org/10.1021/jp970347x.
  • 25. Nelson, W. H. (1988). ESR and ENDOR studies of radicals produced in hydroxyproline single crystals by x-irradiation at low temperatures. J. Phys. Chem., 92, 554–561. doi.org/10.1021/j100313a060.
  • 26. Nelson, W. H., & Nave, C. R. (1981). ESR and ENDOR studies of radicals produced in hydroxyproline single crystals by x irradiation at low temperature. J. Chem. Phys., 74, 2710–2716. doi.org/10.1063/1.441440.
  • 27. Matysik, J., Alia, Bhalu, B., & Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci., 82, 525–532. www.jstor.org/stable/24105959.
  • 28. Rawadieh, S., Altarawneh, I., Alateyat, H. B., & Altarawneh, M. (2013). Theoretical study on the unimolecular decomposition of proline. Comput. Theor. Chem., 1018, 45–49. doi.org/10.1016/j.comptc.2013.05.034.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-930f6d6b-06fd-449b-9e55-0d4609f951de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.