PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vertical and horizontal dynamic response of suction caisson foundations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the dynamic response of suction caisson foundations is studied using a three-dimensional finite element model with an absorbing boundary. The adopted formulation is based on the substructuring method. This formulation has been applied to analyze the effect of soil–structure interaction on the dynamic response of the suction foundation as a function of the kind of load. The suction caisson foundations are embedded in viscoelastic homogenous soils and subjected to external harmonic forces. For each frequency, the dynamic impedance connects the applied forces to the resulting displacement. The constitutive elements of the system are modeled using the finite element volumes and shell elements. The numerical results for the dynamic response of the suction foundations are presented in terms of vertical and horizontal displacements as well as vertical and horizontal dynamic impedances. The results indicated that the overall dynamic response is highly affected by the suction caisson diameter, the soil stiffness variation, and the suction caisson length.
Wydawca
Rocznik
Strony
1--13
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • LGCE Department of Civil Engineering, University of Jijel, Bp 98 ouled aissa jijel, Algeria
  • LGCE Department of Civil Engineering, University of Jijel, Bp 98 ouled aissa jijel, Algeria
autor
  • 3SR Laboratory/Polytech Grenoble Alpes University, France
Bibliografia
  • [1] He, R., Wang, L., Pak, R. Y., Guo, Z., &Zheng, J. (2017a). Vertical elastic dynamic impedance of a large diameter and thin-walled cylindrical shell type foundation. Soil Dynamics and Earthquake Engineering, 95, 138–152.
  • [2] R. He,, R.Y.S. Pak and L.Z. Wang. (2017b), Elastic lateral dynamic impedance functions for a rigid cylindrical shell type foundation. Int. J. Numer. Anal. Meth. Geomech. 2017; 41:508–526.
  • [3] C. Latini, V. Zania. Dynamic lateral response of suction caissons. Soil Dynamics and Earthquake Engineering 100 (2017) 59–71
  • [4] Heidari, M., Jahanandish, M., El Naggar, H., & Ghahramani, A. (2014). Nonlinear cyclic behavior of laterally loaded pile in cohesive soil. Canadian Geotechnical Journal, 51(2), 129–143.
  • [5] Gerolymos, N., and Gazetas, G. 2005. Constitutive model for 1-D cyclic soil behavior applied to seismic analysis of layered deposits. Soils and Foundations, 45(3): 147–159
  • [6] Latini, C., Cisternino, M., &Zania, V. (2016, June). Vertical Dynamic Stiffness of Offshore Foundations. In The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
  • [7] Novak M, Nogami T. Soil-pile interaction in horizontal vibration. EarthqEngStructDyn 1977;5:263–81.
  • [8] Nogami T. Coefficients of soil reaction to pile vibration. J GeotechEngDiv1980:106
  • [9] Novak M. Dynamic Stiffness and Damping of Piles. Can Geotech J1974;11(4):574–98.
  • [10] Mylonakis G. Elastodynamic model for large-diameter end-bearing shafts. SoilsFound 2001;41(3):31–44.
  • [11] Sen R, Davis TG, Banerjee PK. Dynamic analysis of piles and pile groups embedded in homogeneous soil. Earthquake Engineering and Structural Dynamics 1985; 13:53–65.
  • [12] Maeso O, Aznarez JJ, Garcia F. Dynamic impedances of piles and groups of piles in saturated soils. Computers and Structures 2005; 10:769–782.
  • [13] Kaynia AM (1982) Dynamic stiffness and seismic response of pile groups. Research Report R82-03, Order No. 718, Cambridge, Massachusetts
  • [14] Kaynia AM, Kausel E. Dynamics of piles and pile groups in layered soils. Soil Dynamics and Earthquake Engineering 1991; 10 (8): 386–401.
  • [15] Kausel E, Whitmaand RV, Elsabee F, Morray JP (The spring method for embedded foundation. Nuclear Eng Des 1978; 48:377–392
  • [16] S. E. Kattis, D. Polyzos, D. E. Beskos. Vibration isolation by a row of piles using a 3-D frequency domain BEM. International Journal for Numerical Methods in Engineering. 46, 713–728 (1999)
  • [17] Francesco Vinciprova, Orlando MaesoFortuny, Juan José Aznárez, Giuseppe Oliveto. Interaction of BEM analysis and experimental testing on Pile-Soil Systems. Problems in Structural Identification and Diagnostics: General Aspects and Applications 2003;195–227
  • [18] L.A. Padron, J.J. Aznarez, O. Maeso « BEM–FEM coupling model for the dynamic analysis of piles and pile groups ». Engineering Analysis with Boundary Elements 31 (2007) 473–484.
  • [19] P.K. Emani, B.K. Maheshwari. (2009), «Dynamic impedances of pile groups with embedded caps in homogeneous elastic soils using CIFECM». Soil Dynamics and Earthquake Engineering. 963–973.
  • [20] Messioud S, Dias D, US Okoay, Sbartai S. (2011), « Impédances dynamique de fondation sur groupe de pieux. 29 emerencontres AUGC Telemcen.
  • [21] S. Messioud, U. S. Okyay, B. Sbartai and D. Dias, Dynamic response of pile reinforced soils and piled foundations, Geotech. Geol. Eng. 34(3) (2016) 1–17.
  • [22] Messioud, S., Dias, D., &Sbartai, B. (2019). Influence of the pile toe condition on the dynamic response of a group of pile foundations. International Journal of Advanced Structural Engineering, 11(1), 55–66.
  • [23] Liingaard, M., Andersen, L., & Ibsen, L. B. (2007). Impedance of flexible suction caissons. Earthquake Engineering & Structural Dynamics, 36(14), 2249–2271.
  • [24] Kourkoulis, R. S., Lekkakis, P. C., Gelagoti, F. M., &Kaynia, A. M. (2014). Suction caisson foundations for offshore wind turbines subjected to wave and earthquake loading: effect of soil-foundation interface. Géotechnique, 64(3), 171.
  • [25] Wang, X., Yang, X., &Zeng, X. (2017). Seismic centrifuge modelling of suction bucket foundation for offshore wind turbine. Renewableenergy, 114, 1013–1022.
  • [26] A Pecker, Dynamique des sols, Presses de l’Ecole Nationale des Ponts et Chaussees (1984).
  • [27] Pradhan PK, Baidya DK, Ghosh DP (2004) Vertical Dynamic response of foundation resting on a soil layer over rigid rock using Cone Model. J InstEng 85:179–185.
  • [28] CODE-ASTER, http://www.code-aster.org/utilisation/nonfrench.ph.pNon-FrenchCode_AsterResources
  • [29] R. L. Kuhlemeyer and J. Lysmer, Finite element method accuracy for wave propagation problems, J. Soil Mech. Found. Div. ASCE 99(SM5) (1973) 421–427.
  • [30] Tuladhar, R., Maki, T., and Mutsuyoshi, H. 2008. Cyclic behavior of laterally loaded concrete piles embedded into cohesive soil. Earthquake Engineering and Structural Dynamics, 37(1): 43–59. doi:10.1002/eqe.744.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-74fea723-92d2-47c5-9c3f-fb8b03b61fd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.