Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
This article investigates the solution of exponentially graded (EG) thick rectangular plates resting on two-parameter elastic foundations according to a trigonometric plate theory (TPT). This theory includes the effect of both shear and normal strains thickness without needing to any shear correction factor. The displacement fields contains initial terms of a power series across plate thickness as well as additional trigonometric terms. The material properties of plate is graded such that Lamé’s coefficients convert exponentially in a given constant orientation.Equilibrium equations according to the EG plate resting on Pasternak’s foundations are derived. The solution is obtained by using Navier’s technique. Numerical results for the EG thick plate on elastic foundations are presented, and compared with those available in the literature. The influences of Winkler’s and Pasternak’s parameters, side-to-thickness ratio, inhomogeneity parameter and aspect ratio on the bending responses of EG plates are investigated.
Wydawca
Czasopismo
Rocznik
Tom
Strony
193--208
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, SaudiArabia
- Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
Bibliografia
- [1] X.-L. Huang and J.-J. Zheng. Nonlinear vibration and dynamic response of simply supported shear deformable laminated plates on elastic foundations. Engineering Structures, 25(8):1107–1119, 2003. doi:10.1016/S0141-0296(03)00064-6.
- [2] P. Malekzadeh and A.R. Setoodeh. Large deformation analysis of moderately thick laminated plates on nonlinear elastic foundations by DQM. Composite Structures, 80(4):569–579, 2007. doi:10.1016/j.compstruct.2006.07.004.
- [3] P.H. Wen. The fundamental solution of Mindlin plates resting on an elastic foundation in the Laplace domain and its applications. International Journal of Solids and Structures, 45(3–4):1032–1050, 2008. doi:10.1016/j.ijsolstr.2007.09.020.
- [4] A.M. Zenkour. A comparative study for bending of cross-ply laminated plates resting on elastic foundations. Smart Structures and Systems, 15(6):1569–1582, 2015. doi: 10.12989/sss.2015.15.6.156.
- [5] P.L.Pasternak. On a new method of analysis of an elastic foundation by means of two foundation constants. Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow, 1–56, 1954.
- [6] J.N. Reddy. Analysis of functionally graded plates. International Journal of Numerical Methods in Engineering, 47(1–3):663–684, 2000. doi: 10.1002/(SICI)10970207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
- [7] S.S. Vel and R.C. Batra. Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA Journal, 40(7):1421–1433, 2002. doi:10.2514/2.1805.
- [8] S.A. Al Khateeb and A.M. Zenkour. A refined four-unknown plate theory for advanced plates resting on elastic foundations in hygrothermal environment. Composite Structures, 111:240–248, 2014. doi:10.1016/j.compstruct.2013.12.033.
- [9] Z.Q. Cheng and S. Kitipornchai. Membrane analogy of buckling and vibration of inhomogeneous plates. Journal of Engineering Mechanics, 125(11):1293–1297, 1999. doi: 10.1061/(ASCE)0733-9399(1999)125:11(1293).
- [10] Z.Q.Cheng and, R.C.Batra. Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plate. Journal of Sound and Vibrations, 229(4):879–895, 2000. doi:10.1006/jsvi.1999.2525.
- [11] J.N. Reddy and Z.Q. Cheng. Frequency correspondence between membranes and functionally graded spherical shallow shells of polygonal planform. International Journal of Mechanical Sciences, 44(5):967–985, 2002. doi:10.1016/S0020-7403(02)00023-1.
- [12] J. Yang and H.S. Shen. Dynamic response of initially stressed functionally graded rectangular thin plates.Composite Structures, 54(4):497–508, 2001. doi:10.1016/S0263-8223(01)00122-2.
- [13] J. Yang and H.S. Shen. Non-linear analysis of functionally graded plates under transverse and in-plane loads. International Journal of Non-linear Mechanics, 38(4):467–482, 2003. doi: 10.1016/S0020-7462(01)00070-1.
- [14] S.S.Akavci, Mechanical behavior of functionally graded sandwich plates on elastic foundation. Composites Part B: Egnineering, 96:136–152, 2016. doi:10.1016/j.compositesb.2016.04.035.
- [15] M. Bouazza, Y. Kenouza, N. Benseddiq, and A.M. Zenkour. A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates. Composite Structures, 182:533–541, 2017.doi:10.1016/j.compstruct.2017.09.041.
- [16] A.M. Zenkour and A.F. Radwan. Compressive study of functionally graded plates resting on Winkler–Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory. Archives of Civil and Mechanical Engineering, 18(2):645–658,2018. doi: 10.1016/j.acme.2017.10.003.
- [17] A.M.Zenkour and A.F.Radwan. Free vibration analysis of multilayered composite and soft core sandwich plates resting on Winkler–Pasternak foundations. Journal of Sandwich Structures and Materials, 20(2):169–190, 2018. doi:10.1177/1099636216644863.
- [18] M.Touratier. An efficient standard plate theory. International Journal of Engineering Science, 29(8):901–916, 1991. doi:10.1016/0020-7225(91)90165-Y.
- [19] M. Stein. Nonlinear theory for plates and shells including the effects of transverse shearing. AIAA Journal, 24(9):1537–1544, 1986. doi:10.2514/3.9477.
- [20] J.N. Reddy. A general third-order nonlinear theory of plates with moderate thickness. International Journal of Non-linear Mechanics, 25(6):677–686, 1990. doi: 10.1016/00207462(90)90006-U.
- [21] A.M. Zenkour. The refined sinusoidal theory for FGM plates on elastic foundations. International Journal of Mechanical Sciences, 51(11–12):869–880, 2009. doi: 10.1016/ j.ijmecsci.2009.09.026.
- [22] A.M.Zenkour. Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations. Composite Structures, 93(1):234–238, 2010. doi:10.1016/j.compstruct.2010.04.017.
- [23] A.M. Zenkour. Buckling of fiber-reinforced viscoelastic composite plates using various plate theories. Journal of Engineering Mathematics, 50(1):75–93, 2004. doi: 10.1023/ B:ENGI.0000042123.94111.35.
- [24] A.M.Zenkour. On vibration of functionally graded plates according to are fined trigonometric plate theory. International Journal of Structural Stability and Dynamics, 5(2):279–297, 2005. doi:10.1142/S0219455405001581.
- [25] A.M.Zenkour. Generalized shear deformation theory for bending analysis of functionally graded plates. Applied Mathematical Modelling, 30(1):67–84, 2006. doi:10.1016/j.apm.2005.03.009.
- [26] A.M. Zenkour. Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Archive of Applied Mechanics, 77(4):197–214, 2007. doi: 10.1007/s00419-006-0084-y.
- [27] S.P. Timoshenko and W. Woinowsky-Krieger. Theory of Plates and Shells. New-York, NY: McGraw-Hill,1970.
- [28] K.Y. Lam, C.M. Wang, and X.Q. He. Canonical exact solution for Levy-plates on two parameter foundation using Green’s functions. Engineering Structures, 22(4):364–378, 2000. doi: 10.1016/S0141-0296(98)00116-3.
- [29] R. Buczkowski and W. Torbacki.Finite element modeling of thick plates on two-parameter elastic foundation. International Journal for Numerical and Analytical Methods in Geomechanics, 25(14):1409–1427,2001. doi:10.1002/nag.187.
- [30] Z.Y.Huang, C.F.Lu, and W.Q.Chen. Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations. Composite Structures, 85(2):95–104, 2008. doi:10.1016/j.compstruct.2007.10.010.
- [31] H-T. Thai and D.H. Choi. A refined plate theory for functionally graded plates resting on elastic foundation. Composites Science and Technology, 71(16):850–1858, 2011. doi: 10.1016/j.compscitech.2011.08.016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0aa3e8f-63cd-4397-b4ac-878b3c27fe28