PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Theoretical study on thermal and structural phenomena in thin elements heated by a laser beam

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper concerns the mathematical and numerical modelling of thermal phenomena and phase transformations in the solid state accompanying laser heating processes. Thermal phenomena with the motion of a liquid metal in the fusion zone are analyzed on the basis of numerical solution of equations for mass, momentum and energy conservation. Phase transformations in solid state are estimated using classic models of the kinetics of phase transformations as well as continuous heating transformations (CHT) and continuous cooling transformations (CCT) diagrams for S355 steel. Computer simulations are executed for the laser welding process in order to predict the influence of welding speed on the structural composition as well as thermal and structural strains in the joint.
Rocznik
Strony
3--24
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
  • Institute of Mechanics and Machine Design Foundations Częstochowa University of Technology Dąbrowskiego 73, 42-200 Częstochowa, Poland
autor
  • Institute of Mechanics and Machine Design Foundations Częstochowa University of Technology Dąbrowskiego 73, 42-200 Częstochowa, Poland
autor
  • Katowice School of Technology Rolna 43, 40-555 Katowice, Poland
Bibliografia
  • 1. W.M. Steen, Laser Material Processing, Springer, London, 1991.
  • 2. C. Dawes, Laser Welding, Abington Publishing, New York, 1992.
  • 3. J. Pilarczyk, M. Banasik, J. Dworak, S. Stano, Technological applications of laser beam welding and cutting at the Instytut Spawalnictwa, Przegląd Spawalnictwa, 5-6, 6–10, 2006 [in Polish].
  • 4. X. Jin, L. Li, Y. Zhang, A study of fresnel absorption and reflections in the keyhole in deep penetration laser welding, Journal of Physics D: Applied Physics, 35, 2304–2310, 2002.
  • 5. L. Han, F.W. Liou, Numerical investigation of the influence of laser beam mode on melt pool, International Journal of Heat and Mass Transfer, 47, 4385–4402, 2004.
  • 6. T. Mościcki, J. Hoffman, Z. Szymański, Modelling of plasma formation during nanosecond laser ablation, Archives of Mechanics, 63, 2, 99–116, 2011.
  • 7. A. De, T. DebRoy, Reliable calculations of heat and fluid flow during conduction mode laser welding through optimization of uncertain parameters,Welding Journal, 84, 101–112, 2005.
  • 8. M.J. Torkamany, J. Sabbaghzadeh, M.J. Hamedi, Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels, Materials & Design, 34, 666–672, 2012.
  • 9. W. Piekarska, M. Kubiak, Theoretical investigations into heat transfer in laser-welded steel sheets, Journal of Thermal Analysis and Calorimetry, 110, 159–166, 2012.
  • 10. S.A. Tsirkas, P. Papanikos, T.H. Kermanidis, Numerical simulation of the laser welding process in butt-joint specimens, Journal of Materials Processing Technology, 134, 59–69, 2003.
  • 11. R. Rai, S.M. Kelly, R.P. Martukanitz, T.A. Debroy, Convective heat-transfer model for partial and full penetration keyhole mode laser welding of a structural steel, Metallurgical and Materials Transactions A, 39A, 98–112, 2008.
  • 12. E. Ranatowski, Thermal modelling of laser welding. Part I: The physical basis of laser welding, Advances in Materials Science, 1, 34–40, 2003.
  • 13. F. Lu, X. Tang, H. Yu, S. Yao, Numerical simulation on interaction between TIG welding arc and weld pool, Computational Materials Science, 35, 458–465, 2006.
  • 14. S. Serajzadeh, Modelling of temperature history and phase transformations during cooling of steel, Journal of Materials Processing Technology, 146, 311–317, 2004.
  • 15. W.S. Chang, S.J. Na, A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining, Journal of Materials Processing Technology, 120, 208–214, 2002.
  • 16. K. Abderrazak, S. Bannour, H. Mhiri, G. Lepalec, M. Autric, Numerical and experimental study of molten pool formation during continuous laser welding of AZ91 magnesium alloy, Computer Materials Science, 44, 858–866, 2009.
  • 17. W. Piekarska, Numerical analysis of thermomechanical phenomena during laser welding process. Temperature field, phase transformations and stresses, Seria Monografie 135, Wydawnictwo Politechniki Częstochowskiej, Częstochowa, 2007 [in Polish].
  • 18. K. Mundra, T. DebRoy, Calculation of weld metal composition change in high-power conduction mode carbon dioxide laser-welded stainless steel, Metallurgical Transactions B, 24B, 2, 145–155, 1993.
  • 19. K.J. Lee, Characteristics of heat generation during transformation in carbon steels, Scripta Materialia, 40, 735–742, 1999.
  • 20. D. Gery, H. Long, P. Maropoulos, Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding, Journal of Materials Processing Technology, 167, 393–401, 2005.
  • 21. P. Lacki, K. Adamus, Numerical simulation of the electron beam welding process, Computers & Structures, 89, 977–985, 2011.
  • 22. P. Lacki, K. Adamus, K. Wojsyk, M. Zawadzki, Z. Nitkiewicz, Modeling of heat source based on parameters of electron beam welding process, Archives of Metallurgy and Materials, 56, 2, 455–462, 2011.
  • 23. W. Piekarska, M. Kubiak, A. Bokota, Numerical simulation of thermal phenomena and phase transformations in laser-arc hybrid welded joints, Archives of Metallurgy and Materials, 56, 409–421, 2011.
  • 24. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, USA, 1990.
  • 25. O.C. Zienkiewicz, R.L. Taylor, The finite element method, 5th ed., Vol. 1–3, Butterworth-Heinemann, New York, 2000.
  • 26. G. De Valh Davis, Natural convection of air in a square cavity a bench mark numerical olution, International Journal of Numerical Methods in Fluids, 3, 249–264, 1983.
  • 27. O. Botella, R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Computers & Fluids, 27, 421–433, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e1cfb0a-c5d3-4782-819b-d3b6eae5aff3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.