PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Clay/nanocomposite hydrogels : In review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of advanced materials those are stronger, more rigid, lighter, hotter and self-renewable than existing materials has been the rising point of many research studies conducted in recent years. Within this scope, the interest to production of nanostructured materials is received considerable attention worldwide due to their potential positive contribution to wide variety of technological areas such as electronics, catalysis, adsorbents, ceramics, magnetic data storage, structural components etc. In these efforts polymer nanocomposites as the form of hydrogels, reinforced with well-dispersed layered silicate, typically montmorillonite can be given as a one of the promising composite material. However, long-standing problems for polymer-clay nanocomposites include actual exfoliation of clay particles in discrete layers, uniform distribution of clay layers throughout the polymer, and randomness of clay sequences. For the exfoliation of clay particles, although the chemical modification of clay minerals in aqueous media is the well-known and more general way applied by researchers, the physical pathway method performed by high-energy ball mills is also gaining increasing attention as an alternative pretreatment way. Grinding of crushed materials is one of the key processes in the mineral and cement industry, but the increased concern on the preparation of fine-grained powders (nano powders) or the manufacture of composites with desirable properties, especially performed with use of high-energy ball mills, has led to significantly widen the usage field of grinding. Undoubtedly, the main reason for these efforts is to improve the performance of existing materials. In this paper the fundamental concepts, classification, physical and chemical characteristics and the production methods of clay/polymer nanocomposites was briefly reviewed base on the composite hydrogel. Particular attention was paid to the pre-treatment (exfoliation) of clays with high-energy ball mills, which is increasingly being accepted as an alternative method to eliminate the negative effects of chemical treatment in some composite forms.
Rocznik
Strony
art. no. 165991
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab.
Twórcy
  • Eskisehir Osmangazi University, Mining Engineering Department, Eskisehir Turkey
  • Eskisehir Osmangazi University, Biomedical Engineering Department, Eskisehir Turkey
Bibliografia
  • ALAM, A., ZHANG, Y., KUAN, H-C., LEE, S-H., MA, J., 2018. Polymer composite hydrogels containing carbon nanomaterials—Morphology and mechanical and functional performance. Progress in Polymer Science. 77, 1–18.
  • AYDINBAKAR, E., KURAMA, H., 2021. The Effects of exfoliation on the clay/polymer nanocomposites hydrogel structure. European Metallurgical Conference (EMC-21) June 27-30.
  • BAHRAM, M., MOHSENI, N., MOGHTADER, M., 2016. An introduction to hydrogels and some recent applications. In Emerging concepts in analysis and applications of hydrogels. Intech Open
  • BALAZ, P., 2008. Mechanochemistry in Nanoscience and Minerals Engineering, XIII, 413p, ISBN: 978-3-540-74854-0
  • BEE, S-L., ABDULLAH, M.A.A., BEE, S-T., SIN, L.T., RAHMAT, A.R., 2018. Polymer nanocomposites based on silylated-montmorillonite: A review. Progress in Polymer Science, 85, 57–82.
  • BURGENTZLÉ, D., DUCHET J., GÉRARD, J.F., JUPİN, A., FİLLON, B., 2004. Solvent-based nanocomposite coatings I. Dispersion of organophilic montmorillonite in organic solvents. Journal of Colloid and Interface Science 278, 26–39.
  • BUSTAMANTE-TORRES, M., ROMERO-FIERRO, D., ARCENTALES-VERA, B., PALOMINO, K., MAGAÑA, H., BUCIO, E., 2021. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels, 7, 182.
  • BUWALDA, S.J., BOERE, K.W.M., DIJKSTRA, P.J., FEIJEN, J., VERMONDEN, T., HENNINK, W.E., 2014. Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release, 190, 254–273.
  • CHATTERJEE, U., BUTOLA, B.S., JOSHI, M., 2017. High energy ball milling for the processing of organo-montmorillonite in bulk. Applied Clay Science, 140, 10-16
  • CHIRANI N, YAHIA LH, GRITSCH L, MOTTA F. L., CHIRANI S., FARÉ S., 2016. History and applications of hydrogels. J Biomedical Sci., 4: 2:13, 1-27.
  • FORBES, E., M. A, M., BRUCKAND, W., 2018, Clay minerals in flotation and comminution operation, Clays in Mineral Processing Value Chain edited by Grafe, M., Klauber, C., MCFarlane, A.J., Robinson D.J. Publisher: Cambridge University Press, ISBN: 9781316661888, DOI: 10.1017/9781316661888
  • FROST, R.L., MAKO, E., KRISTOF, J., HORVATH, E., THEO KLOPROGGE, J., 2001. Mechanochemical treatment of kaolinite. J. Colloid Interface Sci. 239, 458–466.
  • FU, S., SUN, Z., HUANG, P., LI, Y., HU, N., 2019. Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, 1, 2–30.
  • HARAGUCHI, K., 2007. Nanocomposite Hydrogels, Curr. Opin. Solid State Mater. Sci. 11 (3−4), 47−54.
  • HARAGUCHI, K., 2011. Synthesis and Properties of Soft Nanocomposite Materials with Novel Organic/Inorganic Network Structures. Polym. J. 43 (3), 223−241.
  • HARRIS, J.T., MCNEIL, A. J., 2020. Cellulose hydrogels for rapid dye removal from water. ChemRxiv. Cambridge: Cambridge Open Engage, DOI: 10.26434/chemrxiv.11774757
  • HE, H., MA L., ZHU J., Frost R. L., THENG B. K. G., BERGAYA F., 2014. Synthesis of organoclays: A critical review and some unresolved issues, Applied Clay Science 100 22–28, http://dx.doi.org/10.1016/j.clay.2014.02.008
  • HERNÁNDEZ, K. A., ILLESCAS, J., DÍAZ-NAVA, M.C., MURO-URISTA, C. R., MARTÍNEZ-GALLEGOS, S., ORTEGA-AGUILAR, R. E., 2016. Polymer-Clay Nanocomposites and Composites: Structures, Characteristics, and their Applications in the Removal of Organic Compounds of Environmental Interest. Med chem., 6:3.
  • JAYASREE, A., PRABHAKARAN, R.,2021, Characterizatıon, beneficıation and utilızation of clay from Panruti area, Tamılnadu, Indıa, Journal of Applied Geochemistry, 23, 2, 108-116.
  • KUŚTROWSKI, P., NATKAŃSKI, P., ROKICIŃSKA, A., WITEK, E., 2018. Polymer Hydrogel-Clay (Nano) Composites, chapter 1.
  • LEE, Y.-C., KUO, WEN, S-B, LIN, LIN, C.-P., 2007. Changes of organo-montmorillonite by ball-milling in water and kerosene. Appl. Clay Sci. 36, 265–270.
  • MANI, G., FAN, Q., UGBOLUE, S.C., EIFF, I.M., 2003. Size reduction of clay particles in nanometer dimensions. Mater. Res. Soc. Symp. Proc. 740.
  • MEYERS, M.A, MISHRA, A., BENSON, D.J., 2006. Mechanical properties of nanocrystalline materials. Progress in Materials Science, 51, 427–556.
  • MITTAL V., 2009. Polymer Layered Silicate Nanocomposites: A Review, Materials 2, 992-1057. doi:10.3390/ma2030992
  • MITTAL, V., 2012, Characterization Techniques for Polymer Nanocomposites, Wiley, ISBN: 978-3-527-65452-9
  • MURUGESAN, K. S., SCHEİBEL, T., 2020. Copolymer/Clay Nanocomposites for Biomedical Applications. Adv. Funct. Mater. 30, 1908101.
  • PERRIN-SARAZIN F., SEPEHR M., BOUARICHA, S., DENAULT J., 2009. Potential of Ball Milling to Improve Clay Dispersion in Nanocomposites, Polymer Engineering and Science. 49, 651–665. DOI 10.1002/pen.21295
  • RAMADAN, A R., ESAWI, A. M.K., GAWAD, A. A., 2010. Effect of ball milling on the structure of Na+-montmorillonite and organo-montmorillonite (Cloisite 30B). Applied Clay Science 47, 196–202.
  • RAY, S., OKAMOTO, M., 2003. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28 1539-1641.
  • SHARMA, A. K, KAITH, B. S, GUPTA B., SHANKER U., LOCHAB S. P., 2018. A facile strategy to synthesize a novel and green nanocomposiite based on gum Salai guggal-Investigation of antimicrobial activity. Mater Chem Phys 219 129–141.
  • MALEKI, S., KARIMI-JASHNI A., 2017. Effect of ball milling process on the structure of local clay and its adsorption performance for Ni(II) removal. Applied Clay Science. 137, 213–224
  • SURYANARAYANA, C., 2001. Mechanical alloying and milling. Progress in Materials Science 46, 1-184
  • THONIYOT, P., TAN, M. J., KARIM, A. A., YOUNG, D. J., LOH, X. J., 2015. Nano-particle–hydrogel composites: Concept, design, and applications of these promising, multi-functional materials. Advanced Science, 2(1-2): 1400010.
  • VAN OLPHEN, H., 1963. An Introduction to Clay Colloid Chemistry. Interscience Publication, New York, 301.
  • WARREN, D.S., SUTHERLAND, S. P. H., KAO, J. Y., WEAL, G. R., MACKAY, S. M., 2017. The Preparation and Simple Analysis of a Clay Nanoparticle Composite Hydrogel. J. Chem. Edu. 94, 1772-1779
  • WICHTERLE, O., LIM, D., 1960. Hydrophilic gels for biological use. Nature, 185, 117-118.
  • VASILE, C., PAMFIL, D., STOLERU, E., BAICAN, M., 2020. New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules, 25, 1539, 1-68.
  • ZHU, T., ZHOU, C. H., KABWE, F.B., WU, Q.Q., LI, C. S., ZHANG, J. R., 2019. Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Applied Clay Science, 169, 48-66.
  • ZHUANG, G., ZHANG, Z., GUO J., LIAO L., ZHAO J., 2015. A new ball milling method to produce organo-montmorillonite from anionic and nonionic surfactants, Applied Clay Science 104 18–26,
  • ZHUMAGALIYEVA, S. N., IMINOVА, R. S., KAIRALAPOVA, G. Z., BEYSEBEKOV, М. M., BEYSEBEKOV, M. K., ABILOV, Z. A., 2017. Composite Polymer-Clay Hydrogels Based on Bentonite Clay and Acrylates: Synthesis, Characterization and Swelling Capacity. Eurasian Chemico-Technological Journal, 19, 279-288.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2870ea63-3b9d-4408-b2b2-9af0774a3a68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.