Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This contemporary work explores the theoretical analysis of energy transfer performance of distinct nanoparticles (silver, copper, aluminium oxide and titanium oxide) adjacent to a moving surface under the influence of a porous medium which is driven by the buoyancy force. A mathematical model is presented which is converted to similarity equations by employing similarity transformation. The condensed nonlinear equations were approximated by the iterative method called RKF 45th-order. The flow and energy transference characteristics are explained through graphs and tabulated values. The notable findings are: silver- water is an appropriate nanofluid for enhancing the thermal conductivity of the base fluid. Titanium oxide – water shows a lower fluid flow movement due to porosity.
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 43 poz., tab, wykr.
Twórcy
autor
- Department of Mathematics, Faculty of Engineering, CHRIST Bengaluru- 560074, Karnataka, INDIA
autor
- Department of Mathematics, Faculty of Engineering, CHRIST Bengaluru- 560074, Karnataka, INDIA
autor
- Department of Mathematics, BMS College of Engineering Bengaluru- 560019, Karnataka, INDIA
autor
- Department of Studies and Research in Mathematics, Kuvempu University Shankaraghatta-577 451, Shimoga, Karnataka, INDIA
Bibliografia
- [1] Choi S.U.S (1995): Enhancing thermal conductivity of fluids with nanoparticles.−The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, pp.99-105.
- [2] Masuda H., Ebata A., Teramea K. and Hishinuma N. (1993):Altering the thermal conductivity and viscosity of liquid by dispersing ultra-fine particles.−Netsu Bussei., vol.7, No.4, pp.227-233.
- [3] Minsta H.A., Roy G., Nguyen C.T. and Doucet D. (2009): New temperature dependent thermal conductivity data for water-based nanofluids. − International Journal of Thermal Sciences. vol.48, pp.363-371.
- [4] Sakiadis B.C. (1961): Boundary layer behaviour on continuous solid surface; the boundary layer equations for two-dimensional and axisymmetric flow of a dusty fluid. − A.I. Ch. E.J, vol.7, No.1, pp.26-28.
- [5] Tsou F.K., Sparrow E.M. and Glodstein R.J. (1967): Flow and heat transfer in the boundary layer on a continuous moving surface.−Int. J. Heat Mass Transfer, vol.10, pp.219-235.
- [6] Crane L.J. (1970): Flow past a stretching plate.−Zeitschrift fur Angewandte Mathematik and Physik ZAMP, vol.21, pp.645-647.
- [7] Chen C.H. (1998): Laminar mixed convection adjacent to vertical, continuously stretching sheets.−Heat and Mass Transfer, vol.33, pp.471-476.
- [8] Khan W.A. and Pop I. (2010): Boundary-layer flow of a nanofluid past a stretching sheet.−International Journal of Heat and Mass Transfer, vol.53, pp.2477–2483.
- [9] Magyari E. and Keller B. (1999): Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface.−J. Phys. D: Appl. Phy., vol.32, pp.577-585.
- [10] Elbashbeshy E.M.A. (2001): Heat transfer over an exponentially stretching continuous surface with suction. −Archives of Mechanics, vol.53, pp.643-651.
- [11] Al-Odat R.A.M.Q., Damesh T.A. and Al-Azab T.A. (2010): Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field effect.−International Journal of Applied Mechanics and Engineering, vol.11, pp.289-299.
- [12] Partha M.K., Murthy P.V.S.N. and Rajasekhar G.P. (2005):Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface.−Heat and Mass Transfer, vol.41, pp.360-366.
- [13] Sanjayanand E. and Khan S.K. (2006):On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet. −International Journal of Thermal Sciences, vol.45, pp.819-828.
- [14] Khan S.K. (2006): Boundary layer viscoelastic fluid flow over an exponentially stretching sheet. − International Journal of Applied Mechanics and Engineering, vol.11, pp.321-335.
- [15] Mustafa M., Hayat T., Pop I., Asghar S. and Obaidat S. (2011): Stagnation-point flow of a nanofluid towards a stretching sheet.− International Journal of Heat and Mass Transfer, vol.54, pp.5588-5594.
- [16] Sharidan S., Mahmood T. and Pop I. (2006): Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet.−Int. J. Appl. Mech. Eng., vol.11, No.3 pp.647-654.
- [17] Gireesha B.J., Manjunatha S. and Bagewadi C.S. (2012): Unsteady hydromagnetic boundary layer flow and heat transfer of dusty fluid over a stretching sheet. − Afr. Metametika, vol.23, No.2, pp.229-241.
- [18] Manjunatha S. and Gireesha B.J. (2016): Effects of variable viscosity and thermal conductivity on MHD flow and heat transfer of a dusty fluid. −Ain Shams Engineering Journal, vol.7, pp.505-515.
- [19] Grubka L.J. and Bobba K.M. (1985): Heat transfer characteristics of a continuous stretching surface with variable temperature. − Int. J. Heat Mass Transfer, vol.107, pp.248-250.
- [20] Mahapatra T.R. and Gupta A.S. (2003): Heat transfer in stagnation point flow towards a stretching surface. −Heat Mass Transfer, vol.32, pp.517-521.
- [21] Andersson H.I., Aareseth J.B. and Dandapat B.S. (2000): Heat transfer in a liquid film on an unsteady stretching surface. −Int. J. Heat Mass Transfer, vol.43, pp.69-74.
- [22] Elbashbeshy E.M.A. and Aldawody D.A. (2010): Effect of thermal radiation and magnetic field on unsteady mixed convection flow and heat transfer over a porous stretching surface. −Int. J. Nonlinear Sci., vol.9, No.4, pp.448-454.
- [23] Gireesha B.J., Mahanthesh B., Gorla R.S.R. and Manjunatha P.T.(2016): Thermal radiation and hall effects on boundary layer flow past a non isothermal stretching surface embedded in porous medium with non uniform heat source/sink and fluid particle suspension.−Heat Mass Transfer, vol.52, No.4, pp.897-911.
- [24] Krishnamurthya M.R., Prasanna Kumara B.C., Gireeshaa B.J. and Gorla R.S.R. (2016): Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium.−Engineering Science and Technology, an Int. Journal, vol.19, No.1, pp.53-61.
- [25] Manjunatha S., Gireesha B.J., Eshwarappa K.M. and BagewadiC.S.(2013): Similarity solutions for boundary layer flow of a dusty fluid through a porous medium over a stretching surface with internal heat generation/absorption.−J. of Porous Media, vol.16, pp.501-514.
- [26] Cheng C-Y. (2006): Natural convection heat and mass transfer of non-Newtonian power law fluids with yield stress in porous media from a vertical plate with variable wall heat and mass fluxes. −Int. Comm. Heat Mass Transfer, vol.33, pp.1156-1164.
- [27] Chamkha A.J., Al-Mudhaf A.F. and Pop I. (2006): Effect of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium.−Int. Comm. Heat Mass Transfer, vol.33, pp.1096-1102.
- [28] Magyari E., Pop I. and Postelnicu A. (2007): Effect of the source term on steady free convection boundary layer flows over a vertical plate in a porous medium. −Part I. Transp. Porous Media, vol.67, pp.49-67.
- [29] Nield D.A. and Kuznetsov A.V. (2008): Natural convection about a vertical plate embedded in a bi-disperse porous medium.−Int. J. Heat Mass Transfer, vol.51, pp.1658-1664.
- [30] MahdyA. and Hady F.M. (2009): Effect of thermophoretic particle deposition in non- Newtonian free convection flow over a vertical plate with magnetic field effect.−J. Non- Newtonian Fluid Mech,. vol.161, pp.37-41.
- [31] Ibrahim F.S., Hady F.M., Abdel-Gaied S.M. and Eid M.R. (2010): Influence of chemical reaction on heat and mass transfer of non-Newtonian fluid with yield stress by free convection from vertical surface in porous medium considering Soret effect.−Appl. Math. Mech. - Engl. Ed. vol.31, No.6, pp.675-684.
- [32] Prasannakumara B.C., Shashikumar N.S. and Venkatesh P. (2017): Boundary layer flow and heat transfer of fluid particle suspension with nanoparticles over a nonlinear stretching sheet embedded in a porous medium. −Nonlinear Engineering, vol.6, No.3, pp.179-190.
- [33] Eid M.R. (2016): Chemical reaction effect on MHD boundary-layer flow of two-phase nanofluid model over an exponentially stretching sheet with a heat generation.−Journal of Molecular Liquids, vol.220, pp.718-725.
- [34] Eid M.R., Alsaedi A., Muhammad T. and Hayat T. (2017): Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation. −Results in Physics, vol.7, pp.4388-4393.
- [35] Eid Mohamed R.(2017): Time-dependent flow of water-NPS over a stretching sheet in a saturated porous medium in the stagnation-point region in the presence of chemical reaction.−Journal of Nanofluids, vol.6, No.3, pp.550-557.
- [36] Eid Mohamed R. and Mishra S.R. (2017): Exothermically reacting of non-Newtonian fluid flow over a permeable nonlinear stretching vertical surface with heat and mass fluxes. −Computational Thermal Sciences, vol.9, No.4, pp.283-296.
- [37] Eid Mohamed R., Kasseb L. Mahny, Taseer Muhammad and Mohsen Sheikholeslam (2018): Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface. −Results in Physics, vol.8, pp.1185-1193.
- [38] Al-Hossainy A.F., Eid M.R. and Zoromba M.S. (2019): SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous medium.−Physica Scripta.
- [39] Tanzila Hayat and Nadeem S. (2017): Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. −Results in Physics, vol.7, pp.2317-2324.
- [40] Abolfazl Zaraki, Mohammad Ghalambaz, Ali J. Chamkha, Mehdi Ghalambaz and Danilo De Rossi (2015): Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: Effects of size, shape and type of nanoparticles, type of base fluid and working temperature. − Advanced Powder Technology,vol.26, pp.935-946.
- [41] Wang C.Y. (1989): Free convection on a vertical stretching surface. − J. Appl. Math. Mech. (ZAMM), vol.69, pp.418-420.
- [42] Khan W.A. and Pop I. (2010): Boundary-layer flow of a nanofluid past a stretching sheet. −International Journal of Heat and Mass Transfer, vol.53, pp.2477-2483.
- [43] Gorla R.S.R. and Sidawi I. (1994): Free convection on a vertical stretching surface with suction and blowing. −Appl. Sci. Res. vol.52, pp.247-257.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abc1a734-63c5-4b56-babb-241793958669