PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of four different nanoparticles in boundary layer flow over a stretching sheet in porous medium driven by buoyancy force

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This contemporary work explores the theoretical analysis of energy transfer performance of distinct nanoparticles (silver, copper, aluminium oxide and titanium oxide) adjacent to a moving surface under the influence of a porous medium which is driven by the buoyancy force. A mathematical model is presented which is converted to similarity equations by employing similarity transformation. The condensed nonlinear equations were approximated by the iterative method called RKF 45th-order. The flow and energy transference characteristics are explained through graphs and tabulated values. The notable findings are: silver- water is an appropriate nanofluid for enhancing the thermal conductivity of the base fluid. Titanium oxide – water shows a lower fluid flow movement due to porosity.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 43 poz., tab, wykr.
Twórcy
  • Department of Mathematics, Faculty of Engineering, CHRIST Bengaluru- 560074, Karnataka, INDIA
  • Department of Mathematics, Faculty of Engineering, CHRIST Bengaluru- 560074, Karnataka, INDIA
autor
  • Department of Mathematics, BMS College of Engineering Bengaluru- 560019, Karnataka, INDIA
  • Department of Studies and Research in Mathematics, Kuvempu University Shankaraghatta-577 451, Shimoga, Karnataka, INDIA
Bibliografia
  • [1] Choi S.U.S (1995): Enhancing thermal conductivity of fluids with nanoparticles.−The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, pp.99-105.
  • [2] Masuda H., Ebata A., Teramea K. and Hishinuma N. (1993):Altering the thermal conductivity and viscosity of liquid by dispersing ultra-fine particles.−Netsu Bussei., vol.7, No.4, pp.227-233.
  • [3] Minsta H.A., Roy G., Nguyen C.T. and Doucet D. (2009): New temperature dependent thermal conductivity data for water-based nanofluids. − International Journal of Thermal Sciences. vol.48, pp.363-371.
  • [4] Sakiadis B.C. (1961): Boundary layer behaviour on continuous solid surface; the boundary layer equations for two-dimensional and axisymmetric flow of a dusty fluid. − A.I. Ch. E.J, vol.7, No.1, pp.26-28.
  • [5] Tsou F.K., Sparrow E.M. and Glodstein R.J. (1967): Flow and heat transfer in the boundary layer on a continuous moving surface.−Int. J. Heat Mass Transfer, vol.10, pp.219-235.
  • [6] Crane L.J. (1970): Flow past a stretching plate.−Zeitschrift fur Angewandte Mathematik and Physik ZAMP, vol.21, pp.645-647.
  • [7] Chen C.H. (1998): Laminar mixed convection adjacent to vertical, continuously stretching sheets.−Heat and Mass Transfer, vol.33, pp.471-476.
  • [8] Khan W.A. and Pop I. (2010): Boundary-layer flow of a nanofluid past a stretching sheet.−International Journal of Heat and Mass Transfer, vol.53, pp.2477–2483.
  • [9] Magyari E. and Keller B. (1999): Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface.−J. Phys. D: Appl. Phy., vol.32, pp.577-585.
  • [10] Elbashbeshy E.M.A. (2001): Heat transfer over an exponentially stretching continuous surface with suction. −Archives of Mechanics, vol.53, pp.643-651.
  • [11] Al-Odat R.A.M.Q., Damesh T.A. and Al-Azab T.A. (2010): Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field effect.−International Journal of Applied Mechanics and Engineering, vol.11, pp.289-299.
  • [12] Partha M.K., Murthy P.V.S.N. and Rajasekhar G.P. (2005):Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface.−Heat and Mass Transfer, vol.41, pp.360-366.
  • [13] Sanjayanand E. and Khan S.K. (2006):On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet. −International Journal of Thermal Sciences, vol.45, pp.819-828.
  • [14] Khan S.K. (2006): Boundary layer viscoelastic fluid flow over an exponentially stretching sheet. − International Journal of Applied Mechanics and Engineering, vol.11, pp.321-335.
  • [15] Mustafa M., Hayat T., Pop I., Asghar S. and Obaidat S. (2011): Stagnation-point flow of a nanofluid towards a stretching sheet.− International Journal of Heat and Mass Transfer, vol.54, pp.5588-5594.
  • [16] Sharidan S., Mahmood T. and Pop I. (2006): Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet.−Int. J. Appl. Mech. Eng., vol.11, No.3 pp.647-654.
  • [17] Gireesha B.J., Manjunatha S. and Bagewadi C.S. (2012): Unsteady hydromagnetic boundary layer flow and heat transfer of dusty fluid over a stretching sheet. − Afr. Metametika, vol.23, No.2, pp.229-241.
  • [18] Manjunatha S. and Gireesha B.J. (2016): Effects of variable viscosity and thermal conductivity on MHD flow and heat transfer of a dusty fluid. −Ain Shams Engineering Journal, vol.7, pp.505-515.
  • [19] Grubka L.J. and Bobba K.M. (1985): Heat transfer characteristics of a continuous stretching surface with variable temperature. − Int. J. Heat Mass Transfer, vol.107, pp.248-250.
  • [20] Mahapatra T.R. and Gupta A.S. (2003): Heat transfer in stagnation point flow towards a stretching surface. −Heat Mass Transfer, vol.32, pp.517-521.
  • [21] Andersson H.I., Aareseth J.B. and Dandapat B.S. (2000): Heat transfer in a liquid film on an unsteady stretching surface. −Int. J. Heat Mass Transfer, vol.43, pp.69-74.
  • [22] Elbashbeshy E.M.A. and Aldawody D.A. (2010): Effect of thermal radiation and magnetic field on unsteady mixed convection flow and heat transfer over a porous stretching surface. −Int. J. Nonlinear Sci., vol.9, No.4, pp.448-454.
  • [23] Gireesha B.J., Mahanthesh B., Gorla R.S.R. and Manjunatha P.T.(2016): Thermal radiation and hall effects on boundary layer flow past a non isothermal stretching surface embedded in porous medium with non uniform heat source/sink and fluid particle suspension.−Heat Mass Transfer, vol.52, No.4, pp.897-911.
  • [24] Krishnamurthya M.R., Prasanna Kumara B.C., Gireeshaa B.J. and Gorla R.S.R. (2016): Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium.−Engineering Science and Technology, an Int. Journal, vol.19, No.1, pp.53-61.
  • [25] Manjunatha S., Gireesha B.J., Eshwarappa K.M. and BagewadiC.S.(2013): Similarity solutions for boundary layer flow of a dusty fluid through a porous medium over a stretching surface with internal heat generation/absorption.−J. of Porous Media, vol.16, pp.501-514.
  • [26] Cheng C-Y. (2006): Natural convection heat and mass transfer of non-Newtonian power law fluids with yield stress in porous media from a vertical plate with variable wall heat and mass fluxes. −Int. Comm. Heat Mass Transfer, vol.33, pp.1156-1164.
  • [27] Chamkha A.J., Al-Mudhaf A.F. and Pop I. (2006): Effect of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium.−Int. Comm. Heat Mass Transfer, vol.33, pp.1096-1102.
  • [28] Magyari E., Pop I. and Postelnicu A. (2007): Effect of the source term on steady free convection boundary layer flows over a vertical plate in a porous medium. −Part I. Transp. Porous Media, vol.67, pp.49-67.
  • [29] Nield D.A. and Kuznetsov A.V. (2008): Natural convection about a vertical plate embedded in a bi-disperse porous medium.−Int. J. Heat Mass Transfer, vol.51, pp.1658-1664.
  • [30] MahdyA. and Hady F.M. (2009): Effect of thermophoretic particle deposition in non- Newtonian free convection flow over a vertical plate with magnetic field effect.−J. Non- Newtonian Fluid Mech,. vol.161, pp.37-41.
  • [31] Ibrahim F.S., Hady F.M., Abdel-Gaied S.M. and Eid M.R. (2010): Influence of chemical reaction on heat and mass transfer of non-Newtonian fluid with yield stress by free convection from vertical surface in porous medium considering Soret effect.−Appl. Math. Mech. - Engl. Ed. vol.31, No.6, pp.675-684.
  • [32] Prasannakumara B.C., Shashikumar N.S. and Venkatesh P. (2017): Boundary layer flow and heat transfer of fluid particle suspension with nanoparticles over a nonlinear stretching sheet embedded in a porous medium. −Nonlinear Engineering, vol.6, No.3, pp.179-190.
  • [33] Eid M.R. (2016): Chemical reaction effect on MHD boundary-layer flow of two-phase nanofluid model over an exponentially stretching sheet with a heat generation.−Journal of Molecular Liquids, vol.220, pp.718-725.
  • [34] Eid M.R., Alsaedi A., Muhammad T. and Hayat T. (2017): Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation. −Results in Physics, vol.7, pp.4388-4393.
  • [35] Eid Mohamed R.(2017): Time-dependent flow of water-NPS over a stretching sheet in a saturated porous medium in the stagnation-point region in the presence of chemical reaction.−Journal of Nanofluids, vol.6, No.3, pp.550-557.
  • [36] Eid Mohamed R. and Mishra S.R. (2017): Exothermically reacting of non-Newtonian fluid flow over a permeable nonlinear stretching vertical surface with heat and mass fluxes. −Computational Thermal Sciences, vol.9, No.4, pp.283-296.
  • [37] Eid Mohamed R., Kasseb L. Mahny, Taseer Muhammad and Mohsen Sheikholeslam (2018): Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface. −Results in Physics, vol.8, pp.1185-1193.
  • [38] Al-Hossainy A.F., Eid M.R. and Zoromba M.S. (2019): SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous medium.−Physica Scripta.
  • [39] Tanzila Hayat and Nadeem S. (2017): Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. −Results in Physics, vol.7, pp.2317-2324.
  • [40] Abolfazl Zaraki, Mohammad Ghalambaz, Ali J. Chamkha, Mehdi Ghalambaz and Danilo De Rossi (2015): Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: Effects of size, shape and type of nanoparticles, type of base fluid and working temperature. − Advanced Powder Technology,vol.26, pp.935-946.
  • [41] Wang C.Y. (1989): Free convection on a vertical stretching surface. − J. Appl. Math. Mech. (ZAMM), vol.69, pp.418-420.
  • [42] Khan W.A. and Pop I. (2010): Boundary-layer flow of a nanofluid past a stretching sheet. −International Journal of Heat and Mass Transfer, vol.53, pp.2477-2483.
  • [43] Gorla R.S.R. and Sidawi I. (1994): Free convection on a vertical stretching surface with suction and blowing. −Appl. Sci. Res. vol.52, pp.247-257.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-abc1a734-63c5-4b56-babb-241793958669
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.