Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Canned Permanent Magnet Synchronous Motors (CPMSMs) are essential components in vacuum pump systems. The stator can of CPMSMs is susceptible to deformation due to thermal stress and high-frequency harmonic electromagnetic force, leading to potential failure. When the CPMSMs are powered by an inverter power supply, it introduces time harmonic current, exacerbating the thermal stress and harmonic electromagnetic force of the system. Thus, this paper analyzes the effects of low-order current harmonics on the electromagnetic force and forced vibration of the stator can. The analytical formulation for the radial electromagnetic force of the CPMSM is obtained, taking into account the influence of harmonic current. Afterwards, the finite element model was established to investigate the space and time harmonic characteristics of the magnetic field and electromagnetic force of the stator can, and its validity was confirmed through testing on a motor test platform. Finally, modal analysis of the stator can under rated conditions and investigation of mechanical deformation induced by electromagnetic force are carried out through harmonic response analysis. This establishes a theoretical basis for improving the reliability and sealing performance of CPMSMs used in pumps.
Czasopismo
Rocznik
Tom
Strony
1--19
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- School of Control Science and Engineering, Bohai University, No.19, Keji Road, Jinzhou, People’s, Republic of China
autor
- School of Control Science and Engineering, Bohai University, No.19, Keji Road, Jinzhou, People’s, Republic of China
autor
- School of Control Science and Engineering, Bohai University, No.19, Keji Road, Jinzhou, People’s, Republic of China
autor
- School of Control Science and Engineering, Bohai University, No.19, Keji Road, Jinzhou, People’s, Republic of China
Bibliografia
- [1] Li X., Yang H., Ge J., Zhu S., Zhu Z., Intelligent cavitation recognition of a canned motor pump based on a CEEMDAN-KPCA and PSO-SVM method, IEEE Sensors Journal, vol. 24, no. 4, pp. 5324–5334 (2024), DOI: 10.1109/JSEN.2023.3347248.
- [2] Li M., Lun S., Mu H., Wang W., A novel temperature calculation method of canned permanent magnet synchronous motor for vacuum pump, Archives of Electrical Engineering, vol. 73, no. 1, pp. 87–104 (2024), DOI: 10.24425/aee.2024.148859.
- [3] Qiu H., Zhang Y., Yang C., Yi R., Performance analysis and comparison of PMSM with concentrated winding and distributed winding, Archives of Electrical Engineering, vol. 69, no. 2, pp. 303–317 (2020), DOI: 10.24425/aee.2020.133027.
- [4] Qiu H., Zhang Y., Yang C., Yi R., Influence of the number of turns on the performance of permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 68, no. 3, pp. 429–436 (2020), DOI: 10.24425/bpasts.2020.133375.
- [5] Li J., Zhou F., Zhang Y., Zhang D., Liu C., Kang J., Pan S., Effect of working fluid temperature on energy dissipation characteristics of liquid ring vacuum pump, Applied Thermal Engineering, vol. 236, 117612 (2024), DOI: 10.1016/j.applthermaleng.2023.121469.
- [6] Pan S., Wang J., Zhao X., Ren C., Xin Y., Wang Z., New design and transient flow analysis of a claw vacuum pump with novel rotors, Vacuum, vol. 216, 113309 (2023), DOI: 10.1016/j.vacuum.2023.112470.
- [7] Kanyolo T.N., Oyando H.C., Chang C.K., Acceleration Analysis of Canned Motors for SMR Coolant Pumps, Energies, vol. 16, no. 15, 5623 (2023), DOI: 10.3390/en16155733.
- [8] Huang Y., Jiang L., Ni Y., Lei H., Gao G., Control method analysis with high performance and stability for permanent magnet motor based on canned structure, International Journal of Electrical Power and Energy Systems, vol. 143, 106291 (2022), DOI: 10.1016/j.ijepes.2022.108441.
- [9] Faiz J., Hassanzadeh M., Kiyoumarsi A., Analytical calculation of magnetic field in surface-mounted permanent-magnet machines with air-gap eccentricity, COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 38, no. 2, pp. 893–914 (2019), DOI: 10.1108/compel-07-2018-0284.
- [10] Zhihong Z., Qinkai H., Xueping X., Air gap magnetic field calculation of permanent magnet direct drive generator based on conformal mapping and magnetic equivalent circuit method, Transactions of China Electrotechnical Society, vol. 38, no. 3, pp. 703–711 (2023), DOI: 10.19595/j.cnki.1000- 6753.tces.210769.
- [11] Liu X., Zhu S., Liu D., Liang J., Design and analysis of wide speed regulation of variable leakage flux reverse salient-pole motor, CES Transactions on Electrical Machines and Systems, vol. 7, no. 3, pp. 284–293 (2023), DOI: 10.30941/CESTEMS.2023.00031.
- [12] Ma C., Li Q., Lu H., Liu Y., Gao H., Analytical model for armature reaction of outer rotor brushless permanent magnet DC motor, IET Electric Power Applications, vol. 12, no. 5, pp. 651–657 (2018), DOI: 10.1049/iet-epa.2017.0751.
- [13] Liu X., Gao J., Huang S., Lu K., Magnetic field and thrust analysis of the U-channel air-core permanent magnet linear synchronous motor, IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1–4 (2017), DOI: 10.1109/tmag.2017.2655082.
- [14] Zhang Y., Zhang X., Wang Y., Zhang W., Liu J., Xu Q., Electromagnetic force ripple suppression strategy of the micro permanent magnet linear motor, Energy Reports, vol. 9, no. S10, pp. 1060–1072 (2023), DOI: 10.1016/j.egyr.2023.05.126.
- [15] Zhu Y., Bai F., Sun J., Multi-objective optimization algorithm for optimizing NVH performance of electric vehicle permanent magnet synchronous motors, Journal of Power Electronics, vol. 22, no. 12, pp. 2039–2047 (2022), DOI: 10.1007/s43236-022-00519-6.
- [16] Wu Q., Li W., Li J., Feng G., Zhang B., Research on electromagnetic and structural characteristics of canned electric actuated valve permanent magnet synchronous motor under eccentricity, IEEE Transactions on Electrical and Electronic Engineering, vol. 17, no. 8, pp. 1176–1197 (2022), DOI: 10.1002/tee.23609.
- [17] Feng Y., Zhang Ji., Simulation analysis of electromagnetic force of shielding sleeve of canned motor, Machinery Design & Manufacture, vol. 4, no. 4, pp. 26–28 (2019), DOI: 10.19356/j.cnki.1001- 3997.2012.04.010.
- [18] Li M., An Y., Zhang Z., DengW.,Wang G., Qi L., Zhu S., Effect of time harmonic current considering load condition on performance of canned induction motor, International Journal of Applied Electromagnetics and Mechanics, vol. 66, no. 3, pp. 369–385 (2021), DOI: 10.3233/JAE-201552.
- [19] Li M., An Y., Hou Q., An H., A Novel Method for Obtaining can Loss of Canned Permanent Magnet Synchronous Motor Under Non-sinusoidal Excitation, Journal of Electrical Engineering & Technology, vol. 19, no. 1, pp. 475–483 (2024), DOI: 10.1007/s42835-023-01562-4.
- [20] Jin F., Li N., Tao R., Investigation of the self-balance impeller of a canned motor pump for axial force reduction, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 6, no. 8, pp. 1806–1817 (2023), DOI: 10.1177/09544062221133735.
- [21] Wang Y., Gao H., Wang H., Ma W., NVH optimization analysis of permanent magnet synchronous motor by rotor slotting, Vehicles, vol. 2, no. 2, pp. 287–302 (2020), DOI: 10.3390/vehicles2020016.
- [22] Wang L., Wang X., Li N., Li T., Modelling and analysis of electromagnetic force, vibration, and noise in permanent magnet synchronous motor for electric vehicles under different working conditions considering current harmonics, IET Electric Power Applications, vol. 17, no. 7, pp. 952–964 (2023), DOI: 10.1049/elp2.12315.
- [23] Verez G., Barakat G., Amara Y., Hoblos G., Impact of Pole and Slot Combination on Vibrations and Noise of Electromagnetic Origins in Permanent Magnet Synchronous Motors, IEEE Transactions on Magnetics, vol. 51, no. 3, pp. 1–4 (2015), DOI: 10.1109/tmag.2014.2354019.
- [24] Valavi M., Nysveen A., Nilssen R., Lorenz R.D., Rølvåg T., Influence of Pole and Slot Combinations on Magnetic Forces and Vibration in Low-Speed PM Wind Generators, IEEE Transactions on Magnetics, vol. 50, no. 5, pp. 1–11 (2014), DOI: 10.1109/tmag.2013.2293124.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-70b59477-90bd-49ae-b1e7-988e61ac8d06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.