PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verification of a binary fluid solidification model using semi-analitycal solution of 1D heat diffusion equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present work is to verify a numerical implementation of a binary fluid, heat conduction dominated solidification model with a novel semi-analytical solution to the heat diffusion equation. The semi-analytical solution put forward by Chakaraborty and Dutta (2002) is extended by taking into account variable in the mushy region solid/liquid mixture heat conduction coefficient. Subsequently, the range in which the extended semi-analytical solution can be used to verify numerical solutions is investigated and determined. It has been found that linearization introduced to analytically integrate the heat diffusion equation impairs its ability to predict solidus and liquidus line positions whenever the magnitude of latent heat of fusion exceeds a certain value.
Rocznik
Strony
85–--102
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Institute of Aeronautics and Applied Mechanics,Warsaw University of Technology, Warszawa, ul. Nowowiejska 24, Poland
autor
  • Institute of Numerical Methods in Mechanical Engineering, Technische Universität Darmstadt, Dolivostr. 15, Germany
Bibliografia
  • 1. Banaszek J, Seredy´nski M., 2012. The accuracy of a solid packing fraction model in recognizing zones of different dendritic structures. Int. J. Heat Mass Transf., 55, 4334–4339. DOI: 10.1016/j.ijheatmasstransfer.2012.03.082.
  • 2. Bars L.M., Worster M.G., 2006. Interfacial conditions between pure fluid and a porous medium, implications for binary alloy solidification. J. Fluid Mech., 550, 149–173. DOI: 10.1017/S0022112005007998.
  • 3. BennonW.D., Incropera F.P., 1987. A continuum model for momentum, heat and species transport in binary solidliquid phase change systems – I. Model formulation. Int. J. Heat Mass Transf., 30, 2161–2170. DOI: 10.1016/ 0017-9310(87)90094-9.
  • 4. BennonW.D., Incropera F.P., 1987. A continuum model for momentum, heat and species transport in binary solidliquid phase change systems – II. Application to solidification in rectangular cavity. Int. J. Heat Mass Transf., 30, 2161–2170. DOI: 10.1016/0017-9310(87)90095-0.
  • 5. Braga S.L., Viskanta R., 1990. Solidification of a binary solution on a cold isothermal surface, Int. J. Heat Mass Transf., 33, 745–754. DOI: 10.1016/0017-9310(90)90172-Q.
  • 6. Chakaraborty S., Dutta P., 2002. An analytical solution for conduction dominated unidirectional solidification of binary mixtures. Appl. Math. Model., 26, 545–561. DOI: 10.1016/S0307-904X(01)00073-7.
  • 7. Jakumeit J., Jana S., Wacławczyk T., Mehdizadeh A., Youani J., Buehrig-Polaczek A., 2012. Four-phase fully coupled mold-filling and solidification simulation for gas porosity prediction in aluminum sand casting. In 13th MCWASP, Austria, June 17–22. DOI: 10.1088/1757-899X/33/1/012074.
  • 8. Kurz W., Fischer D.J., 1990. Fundamentals of solidification. Trans Tech Publications.
  • 9. Seredyński M., Banaszek J., 2014. Front tracking approach to modeling binary alloy solidification: Accuracy verification and the role of dendrite growth kinetics. Int. J. Num Meth. Heat Fluid Flow, 24, 920–931. DOI: 10.1108/HFF-02-2013-0069.
  • 10. Voller V.R., Brent A.D., 1989. The modeling of heat, mass and solute transport in solidification systems. Int. J. Heat Mass Transfer, 32, 1719–1731. DOI: 10.1016/0017-9310(89)90054-9.
  • 11. Voller V.R., 1997. A similarity solution for the solidification of a multicomponent alloy. Int. J. Heat Mass Transf., 40, 2869–2877. DOI: 10.1016/S0017-9310(96)00330-4.
  • 12. Wacławczyk T., Sternel D., Schäfer M., 2011. Verification of binary fluid solidification model. In ICNAAM AIP Conference Proc., vol. 1389, Halkidiki, Greece. DOI: 10.1063/1.3636676.
  • 13. Wacławczyk T., Schäfer M., 2016. Verification of binary fluid solidification model in the finite volume flow solver. arXiv preprint arXiv:1507.01131. Available at: https://arxiv.org/ftp/arxiv/papers/1507/1507.01131.pdf
  • 14. Wang Chao-Yang, Beckermann C., 1993. A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media – I. Formulation. Int. J. Heat Mass Transf., 36, 2747–2758. DOI: 10.1016/0017-9310(93) 90094-M.
  • 15. Wang Chao-Yang, Beckermann C., A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media – II. Application to pressure-driven boiling flow adjacent to a vertical heated plate. Int. J. Heat Mass Transf., 36, 2759–2768. DOI: 10.1016/0017-9310(93)90095-N.
  • 16. Worster M.G., 1986. Solidification of an alloy from a cooled boundary. J. Fluid Mech., 167, 481–501. DOI: 10.1017/ S0022112086002938.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3b945a5-6280-4092-89bc-6ce01c1f0eec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.