PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal feed temperature for an immobilized enzyme fixed-bed reactor: a case study on hydrogen peroxide decomposition by commercial catalase

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optimal feed temperature was determined for a non-isothermal fixed-bed reactor performing hydrogen peroxide decomposition by immobilized Terminox Ultra catalase. This feed temperature was obtained by maximizing the average substrate conversion under constant feed flow rate and temperature constraints. In calculations, convection-diffusion-reaction immobilized enzyme fixed-bed reactor described by a set of partial differential equations was taken into account. It was based on kinetic, hydrodynamic and mass transfer parameters previously obtained in the process of H2O2 decomposition. The simulation showed the optimal feed temperature to be strongly dependent on hydrogen peroxide concentration, feed flow rate and diffusional resistances expressed by biocatalyst effectiveness factor.
Rocznik
Strony
39–--57
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
  • Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland
Bibliografia
  • 1. Al-Muftah A.E., Abu-Reesh I.M., 2005. Effects of internal mass transfer and product inhibition on a simulated immobilized enzyme-catalyzed reactor for lactose hydrolysis. Biochem. Eng. J., 23, 139–153. DOI: 10.1016/j.bej. 2004.10.010.
  • 2. Alptekin Ö., Tükel S.S., Yıldırım D., Alagöz D., 2009. Characterization and properties of catalase immobilized onto controlled pore glass and its application in batch and plug-flow type reactors. J. Mol. Catal. B: Enzym., 58, 124–131. DOI: 10.1016/j.molcatb.2008.12.004.
  • 3. Berendsen W.R., Lapin A., Reuss M., 2007. Non-isothermal lipase-catalyzed kinetic resolution in a packed bed reactor: Modeling, simulation and miniplant studies. Chem. Eng. Sci., 62, 2375–2385. DOI: 10.1016/j.ces.2007 .01.006.
  • 4. BRENDA data-base. Available at: http://www.brenda-enzymes.org/enzyme.php?ecno=1.11.1.6 Campanella L., Roversi R., Sammartino M.P., Tomassetti M., 1998. Hydrogen peroxide determination in pharmaceutical formulations and cosmetics using a new catalase biosensor. J. Pharm. Biomed. Anal., 18, 105–116. DOI: 10.1016/S0731-7085(98)00155-1.
  • 5. Cantemir A. R., Raducan A., Puiu M., Oancea D., 2013. Kinetics of thermal inactivation of catalase in the presence of additives. Process Biochem., 48, 471–477. DOI: 10.1016/j.procbio.2013.02.013.
  • 6. Charron I., Féliers C., Couvert A., Laplanche A., Patria L., Requieme B., 2004. Use of hydrogen peroxide in scrubbing towers for odor removal in wastewater treatment plants. Water Sci. Technol., 50(4), 267–274.
  • 7. Chilton T.H., Colburn A.P., 1934. Mass transfer (absorption) coefficients predictions from data on heat transfer and fluid friction. Ind. Eng. Chem., 26, 1183–1187. DOI: 10.1021/ie50299a012.
  • 8. Costa S.A., Tzanov T., Filipa Carneiro A., Paar A., Gübitz G.M., Cavaco-Paulo A., 2002. Studies of stabilization of native catalase using additives. Enzyme Microb. Technol., 30, 387–391. DOI: 10.1016/S0141-0229(01)00505-1.
  • 9. Do D.D., Weiland R.H., 1981a. Self-poisoning in single catalyst pellets. Ind. Eng. Chem. Fundam., 20, 34–41. DOI: 10.1021/i100001a007.
  • 10. Do D.D., Weiland R.H., 1981b. Fixed bed reactors with catalyst poisoning: First order kinetics. Chem. Eng. Sci., 36, 97–104. DOI: 10.1016/0009-2509(81)80051-6.
  • 11. Do D.D., Weiland R.H., 1981c. Deactivation of single catalyst particles at large Thiele modulus. Travelling wave solutions. Ind. Eng. Chem. Fundam., 20, 48–54. DOI: 10.1021/i100001a009.
  • 12. Do D.D., 1984. Enzyme deactivation studies in a continuous stirred basket reactor. Chem. Eng. J., 28(3), B51–B60. DOI: 10.1016/0300-9467(84)85063-7.
  • 13. Do D.D., Weiland R.H., 1980. Consistency between rate expressions for enzyme reactions and deactivation. Biotechnol. Bioeng., 22, 1087–1093. DOI: 10.1002/bit.260220515.
  • 14. Do D.D., Hossain M.M., 1987. A new method to determine active enzyme distribution, effective diffusivity, rate constant for main reaction and rate constant for deactivation. Biotechnol. Bioeng., 29, 545–551. DOI: 10.1002/ bit.260290502.
  • 15. Doran P.M., 1995. Bioprocess engineering principles. 1st ed., Elsevier Science & Technology Books.
  • 16. Eissen M., Zogg A., Hungerbühler K., 2003. The runaway scenario in the assessment of thermal safety: Simple experimental access by means of the catalytic decomposition of H2O2. J. Loss Prev. Process Ind., 16, 289–296. DOI: 10.1016/S0950-4230(03)00022-6.
  • 17. Ene M.D., Maria G., 2012. Temperature decrease (30􀀀􀀀25◦C) influence on bi-enzymatic kinetics of d-glucose oxidation. J. Mol. Catal. B: Enzym., 81(Supplement C), 19–24. DOI: 10.1016/j.molcatb.2012.05.001.
  • 18. Farkye N.Y., 2004. Cheese technology. Int. J. Dairy Technol., 57, 91–98. DOI: 10.1111/j.1471-0307.2004.00146.x.
  • 19. Görenek G., Akyilmaz E., Dinckaya E., 2004. Immobilization of catalase by entrapping in alginate beads and catalase biosensor preparation for the determination of hydrogen peroxide decomposition. Artif. Cells, Bloo Substitues, Immobilization, 32, 453–461. DOI: 10.1081/BIO-200027518.
  • 20. Grigoras A. G., 2017. Catalase immobilization – A review. Biochem. Eng. J., 117, Part B, 1–20. DOI: 10.1016/j. bej.2016.10.021.
  • 21. Grubecki I., 2016. How to run biotransformations – At the optimal temperature control or isothermally? Mathematical assessment. J. Process Control, 44, 79–91. DOI: 10.1016/j.jprocont.2016.05.005.
  • 22. Grubecki I., 2012. Analytical determination of the optimal temperature profiles for the reaction with parallel deactivation of enzyme encapsulated inside microorganisms cells. Chem. Biochem. Eng. Q., 26(1), 31–43.
  • 23. Grubecki I., 2017. External mass transfer model for hydrogen peroxide decomposition by Terminox Ultra catalase in a packed-bed reactor. Chem. Process Eng., 38, 307–319. DOI: 10.1515/cpe-2017-0024.
  • 24. Hassan M.M., Atiqullah M., Beg S.A., Chowdhury M.H.M., 1995. Analysis of non-isothermal tubular reactor packed with immobilized enzyme systems. Chem. Eng. J. Biochem. Eng. J., 58, 275–283. DOI: 10.1016/0923- 0467(95)06097-9.
  • 25. Horst F., Rueda E.H., Ferreira M.L., 2006. Activity of magnetite-immobilized catalase in hydrogen peroxide decomposition. Enzyme Microb. Technol., 38, 1005–1012. DOI: 10.1016/j.enzmictec.2005.08.035.
  • 26. Hossain M.M., Do D.D., 1989. General theory of determining intraparticle active immobilized enzyme distribution and rate parameters. Biotechnol. Bioeng., 33, 963–975. DOI: 10.1002/bit.260330805.
  • 27. Illanes A., Wilson L., Vera C. (Eds.), 2013. Enzyme kinetics in a heterogeneous system, In: Problem solving in enzyme biocatalysis. John Wiley and Sons Ltd, 87–140.
  • 28. Illanes A. (Eds.), 2013. Enzyme reactor design and operation under mass-transfer limitations, In: Problem Solving in enzyme biocatalysis. John Wiley and Sons Ltd, 181–202.
  • 29. Karger J., Ruthven D.M., 1992. Diffusion in zeolites and other macroporous solids. JohnWiley & Sons, Inc., USA, New York,
  • 30. Krishna A.S., Kittrell J.R., 1990. Reactor analysis with diffusion-limited, concentration-dependent deactivation. AIChE J., 36, 779–783. DOI: 10.1002/aic.690360516.
  • 31. Lin S. H., 1991. Optimal feed temperature for an immobilized enzyme packed-bed reactor. J. Chem. Technol. Biotechnol., 50, 17–26. DOI: 10.1002/jctb.280500104.
  • 32. Maria G., Crisan M., 2017. Operation of a mechanically agitated semi-continuous multi-enzymatic reactor by using the Pareto-optimal multiple front method. J. Proc. Control, 53(Supplement C), 95–105. DOI: 10.1016/j.jprocont. 2017.02.004.
  • 33. Maria G., Crisan M., 2015. Evaluation of optimal operation alternatives of reactors used for d-glucose oxidation in a bi-enzymatic system with a complex deactivation kinetics. Asia-Pac. J. Chem. Eng., 10(1), 22–44. DOI: 10.1002/apj.1825.
  • 34. Maria G., Ene M.D., Jipa I., 2012. Modelling enzymatic oxidation of d-glucose with pyranose 2-oxidase in the presence of catalase. J. Mol. Catal. B: Enzym., 74, 209–218. DOI: 10.1016/j.molcatb.2011.10.007.
  • 35. Maria G., 2012. Enzymatic reactor selection and derivation of the optimal operation policy, by using a model-based modular simulation platform. Comput. Chem. Eng., 36, 325–341. DOI: 10.1016/j.compchemeng.2011.06.006.
  • 36. Martin A.D., 2000. Interpretation of residence time distribution data. Chem. Eng. Sci., 55, 5907–5917. DOI: 10. 1016/S0009-2509(00)00108-1.
  • 37. O’Brien K.B., Killoran S.J., O’Neill R.D., Lowry J.P., 2007. Development and characterization in vitro of a catalase-based biosensor for hydrogen peroxide monitoring. Biosens. Bioelectron., 22, 2994–3000. DOI: 10.1016/ j.bios.2006.12.020.
  • 38. Oh S.H., Yu H.J., Kim M.S., So S., Suh H.J., 2002. Biodegradation of hydrogen peroxide in semiconductor industrial wastewater with catalase from Micrococcus sp. J. Food Sci. Nutr., 7, 33–36. DOI: 10.3746/jfn.2002.7.1.033.
  • 39. Palazzi E., Converti A., 2001. Evaluation of diffusional resistances in the process of glucose isomerization to fructose by immobilized glucose isomerase. Enzyme Microb. Technol., 28, 246–252. DOI: 10.1016/S0141-0229(00)00323-9.
  • 40. Polakovic M., Vrabel P., 1996. Analysis of the mechanism and kinetics of thermal inactivation of enzymes: Critical assessment of isothermal inactivation experiments. Process Biochem., 31, 787–800. DOI: 10.1016/S0032- 9592(96)00026-X.
  • 41. Sendín J.-O.H., Otero-Muras I., Alonso A.A., Banga J.R., 2006. Improved optimization methods for the multiobjective design of bioprocesses. Ind. Eng. Chem. Res., 45, 8594–8603. DOI: 10.1021/ie0605433.
  • 42. Shen L., Chen Z., 2007. Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci., 62, 3748-3755. DOI: 10.1016/j.ces.2007.03.041.
  • 43. Sherwood T.G., Pigford R.L., Wilke C.R., 1975. Mass transfer, in: Clark B.J., Maisel J.W. (Eds.). McGraw-Hill Inc., New York, USA
  • 44. Soares J.C., Moreira P.R., Queiroga A.C., Morgado J., Malcata F.X., Pintado M.E., 2011. Application of immobilized enzyme technologies for the textile industry: a review. Biocatal. Biotransform., 29, 223–237. DOI: 10.3109/ 10242422.2011.635301.
  • 45. Tai N.M., Greenfield P.F., 1981. Determination of the inherent deactivation characteristics for the parallel poisoning of immobilized catalase. Biotechnol. Bioeng., 23, 805–822. DOI: 10.1002/bit.260230411.
  • 46. Tarhan L., Uslan A.H., 1990. Characterization and operational stability of immobilized catalase. Process Biochem., 25(1), 14–18.
  • 47. Testu A., Didierjean S., Maillet D., Moyne C., Metzger T., Niass T., 2007. Thermal dispersion for water or air flow through a bed of glass beads. Int. J. Heat Mass Transfer, 50(7–8), 1469–1484. DOI: 10.1016/j.ijheatmasstransfer. 2006.09.002.
  • 48. Trusek-Hołownia A., Noworyta A., 2015. Efficient utilisation of hydrogel preparations with encapsulated enzymes – A case study on catalase and hydrogen peroxide degradation. Biotechnol. Rep., 6, 13–19. DOI: 10.1016/j.btre. 2014.12.012.
  • 49. Vasudevan P.T., Weiland R.H., 1990. Deactivation of catalase by hydrogen peroxide. Biotechnol. Bioeng., 36, 783–789. DOI: 10.1002/bit.260360805.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9c26b8ea-d8c8-40b9-b977-d085c1f0e3e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.