PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Turbine stage expansion model including internal air film cooling and novel method of calculating theoretical power of a cooled stage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Systematic attempts to maximise the efficiency of gas turbine units are achieved, among other possibilities, by increasing the temperature at the inlet to the expansion section. This requires additional technological solutions in advanced systems for cooling the blade rows with air extracted from the compressor section. This paper introduces a new mathematical model describing the expansion process of the working medium in the turbine stage with air film cooling. The model includes temperature and pressure losses caused by the mixing of cooling air in the path of hot exhaust gases. The improvement of the accuracy of the expansion process mathematical description, compared with the currently used models, is achieved by introducing an additional empirical coefficient estimating the distribution of the cooling air along the profile of the turbine blade. The new approach to determine the theoretical power of a cooled turbine stage is also presented. The model is based on the application of three conservation laws: mass, energy and momentum. The advantage of the proposed approach is the inclusion of variable thermodynamic parameters of the cooling medium. The results were compared with the simplified models used in the literature: separate Hartsel expansion, mainstream pressure, weighted-average pressure and fully reversible. The proposed model for expansion and the determination of theoretical power allows for accurate modelling of the performance of a cooled turbine stage under varying conditions.
Rocznik
Strony
3--27
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Warsaw, Poland
Bibliografia
  • [1] Kotowicz J.: The current state and prospects of development of gas-steam systems. Arch. Energ. 42(2012), 1, 23–28, (in Polish).
  • [2] Badyda K., Miller A.: Power Gas Turbines and Systems with Their Application. Kaprint, Lublin 2014 (in Polish).
  • [3] Boyce M.P.: Gas Turbine Engineering Handbook. Butterworth-Heinemann, Houston 2011.
  • [4] Horlock J.H.: Advanced Gas Turbine Cycles. Pergamon, Kidlington 2013.
  • [5] El-Masri M.A.: On thermodynamics of gas turbine cycles: Part 2 — A model for expansion in cooled turbines. ASME J. Eng. Gas Turbines Power 108(1986), 1,151–159.
  • [6] De Paepe M., Dick E.: Cycle improvements to steam injected gas turbines. Int. J. Energ. Res. 24(2000), 12, 1081–1107.
  • [7] Bolland O., Stadaas J.F.: Comparative evaluation of combined cycle and gas turbine systems with water injection, steam injection, and recuperation. ASME J. Eng. Gas Turbines Power 117(1995), 1, 138–145.
  • [8] Jordal K., Torbidoni L., Massardo A.F.: Convective blade cooling modelling for the analysis of innovative gas turbine cycles. In: Proc. ASME Turbo Expo, New Orleans, 4-7 June 2001, 2001-GT-0390.
  • [9] Horlock J.H., Watson D.T., Jones T.V.: Limitations on gas turbine performance imposed by large turbine cooling flows. ASME J. Eng. Gas Turbines Power123(2001), 3, 487–494.
  • [10] Walsh P.P, Fletcher P.: Gas Turbine Performance. Blackwell Sci., Oxford 2004.
  • [11] Sanaye S., Darvishi M.: Limitations on gas turbine performance imposed by large turbine cooling flows. In: Proc. ASME Turbo Expo: Power for Land, Sea and Air, Vol. 3, 811–819, Montreal, 14-17 May 2007.
  • [12] Masci R., Sciubba E.: A gas turbine cooled-stage expansion model for the simulation of blade cooling effects on cycle performance. Int. J. Turbomach. Propuls. Power 4(2019), 4, 36.
  • [13] Hartsel J.: Prediction of effects of mass-transfer cooling on the blade-row efficiency of turbine airfoils. In: Proc. AIAA 10th Aerospace Sciences Meeting, San Diego, 17-19 January 1972.
  • [14] Young J.B., Horlock J.H.: Defining the efficiency of a cooled turbine. J. Turbomach. 128(2006), 4, 658–667.
  • [15] Horlock J.H., Torbidoni L.: Calculations of cooled turbine efficiency. J. Eng. Gas Turbines Power. 130(2008), 1, 011703.
  • [16] Kurzke J.: Performance modeling methodology: efficiency definitions for cooled single and multistage turbines. In: Proc. ASME Turbo Expo, Amsterdam, 3-6 June 2002, 2002-GT-30497.
  • [17] Trawiński P.: Development of real gas model operating in gas turbine system in Python programming environment. Arch. Thermodyn. 41(2020), 4, 1–39.
  • [18] Trawiński P.: Development of flow and efficiency characteristics of an axial compressor with an analytical method including cooling air extraction and variable inlet guide vane angle. Arch. Thermodyn. 41(2021), 4, 1–17.
  • [19] Kwon H.M., Kim T.S., Kang D.W., Sohn J.L.: Analysis of performance enhancement of a combined cycle power plant by the change of design parameters of gas turbine using coolant pre-cooling. KSFM J. Fluid Mach. 19(2016), 5, 61–67.
  • [20] https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html (accessed 27 Nov. 2021).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bddb4ad2-0b3a-43ff-b14c-1eca31a78313
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.