PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Rainfall-Runoff Erosivity Factor for Cameron Highlands, Pahang, Malaysia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rainfall-runoff is the active agent of soil erosion which often resulted in land degradation and water quality deterioration. Its aggressiveness to induce erosion is usually termed as rainfall erosivity index or factor (R). R-factor is one of the factors to be parameterized in the evaluation of soil loss using the Universal Soil Loss Equation and its reversed versions (USLE/RUSLE). The computation of accurate R-factor for a particular watershed requires high temporal resolution rainfall (pluviograph) data with less than 30-minutes intensities for at least 20 yrs, which is available only in a few regions of the world. As a result, various simplified models have been proposed by researchers to evaluate R-factor using readily available daily, monthly or annual precipitation data. This study is thus aimed at estimating R-factor and to establish an approximate relationship between R-factor and rainfall for subsequent usage in the estimation of soil loss in Cameron highlands watershed. The results of the analysis showed that the least and peak (critical) R-factors occurred in the months of January and April with 660.82 and 2399.18 MJ mm ha-1 h-1year-1 respectively. Also, it was observed that erosivity power starts to increase from the month of January through April before started falling in the month of July. The monthly and annual peaks (critical periods) may be attributed to increased rainfall amount due to climate change which in turn resulted to increased aggressiveness of rains to cause erosion in the study area. The correlation coefficient of 0.985 showed that there was a strong relationship rainfall and R-factor.
Słowa kluczowe
Twórcy
  • Department of Civil and Environmental Engineering, Universiti Teknologi Petronas, 32610 Seri Iskandar Perak, Malaysia
  • Department of Civil and Environmental Engineering, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia
autor
  • Department of Civil and Environmental Engineering, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia
autor
  • Department of Civil and Environmental Engineering, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia
Bibliografia
  • 1. Arnoldus, H.M.J.. 1980. An approximation of the Rainfall Factor in the Universal Soil Loss Equation. In M. De Boodt and D. Gabriels. (eds.). Assessment of Soil Erosion. John Wiley and Sons, Chichester, Gran Bretaña, 127–132.
  • 2. Aronica G. and Ferro, V. 1997. Rainfall Erosivity over Calabrian region. Hydrol Sci J 42(1), 35–48,
  • 3. Bagarello V., 1994. Procedure Semplificate per la Stima del Fattore Climatico de´lia USLE nelPambiente molisano (Simplified procedures for estimating the climatic factor of the USLE in Molise, in Italian).Atti deltaGiornata diStudio SviluppiRecenti delleRicerche sull’Ewsione e sul suo Controllo, Bari, 17–18 February
  • 4. Bakker, M.M., Govers, G., Rounsevell, M.D.A., 2004. The crop productivity-erosion relationship: an analysis based on experimental work. Catena 57 (1), 55–76.
  • 5. Bols, P., 1978. The Is-erodent Map of Java and Madura, Belgian Technical Assistance Project ATA 105, Soil Research Institute, Bogor.
  • 6. Bonilla C.A. and Vidal, K.L. 2011. Rainfall Erosivity in Central Chile, Journal of Hydrology, 410(1-2), 126–133.
  • 7. Brown, L. C. and Foster, G. R. 1987. Storm Erosivity using Idealized Intensity Distributions, Transactions of the Asae, 30, 379–386.
  • 8. Colotti, E.,. 2004. Aplicabilidad de los datos de lluvia horaria en el cálculo de la erosidad. [Applicability of hourly rainfall data to erosion analysis]. Fondo Editorial de Humanidades y Educación. Departamento de Publicaciones. Universidad Central de Venezuela, Caracas. (In Spanish).
  • 9. Commission of the European Communities, 2006. Communication from the Commission to the Council, the European Parliament, the economic and social Committee and the Committee of the regions – Towards a Thematic Strategy for Soil Protection.
  • 10. Delmas, M., Pak, L.T., Cerdan, O., Souchère, V. Bissonnais, Y.L., Couturier, A. and Sorel, L., 2012. Erosion and Sediment Budget Across Scale: A Case Study in a Catchment of the European Loess Belt, Journal of Hydrology 420–421, 255–263.
  • 11. Ferro, V, Giordano, G and Iovino, M., 1991. Isoerosivity and Erosion Risk Map for Sicily, Hydro Sci. J. 36(6), 549–564
  • 12. Fullen, M.A., 2003. Soil Erosion and Conservation in Northern Europe. Progress in Physical Geography 27 (3), 331–358,
  • 13. Gasim, M.B., Sahid, E.T.I., Pereira, J.J. Mokhtar, M. and Abdullah, M.P., 2009. Integrated Water Resource Management and Pollution Sources in Cameron Highlands, Pahang, Malaysia, American-Eurasian J. Agric. & Environ. Sci., 5 (6), 725–732.
  • 14. Haygarth, P.M., 2005. Linking Landscape Sources of Phosphorus and Sediment to Ecological Impacts in Surface Waters. Sci. Total Environ. 344 (1–3), 1–3.
  • 15. IEA, 2006. Hydropower Good Practices: Environmental Mitigation Measures and Benefits Case study 04-03: Reservoir Sedimentation – Cameron Highlands Hydroelectric Scheme, Malaysia”, Hydropower Implementing Agreement Annex VIII.
  • 16. Khosrokhani M. and Pradhan, B. 2014. Spatio-temporal Assessment of Soil Erosion at Kuala Lumpur Metropolitan City using Remote Sensing and GIS, Geomatics Hazards and Risk, 5(3), 252–270.
  • 17. Lal, R., 2001a. Soil Degradation by Erosion. Land Degradation and Development 12(6), 519–539,
  • 18. Lal R., 2001b. Soil Conservation for sequestration. In: Stott DE, Mohtar RH, Steinhardt GC (eds) Proceedings of the 10th international soil conservation organization meeting, 24–29 May 1999, West Lafayette, 459–465.
  • 19. Lulseged, T. and Quang, B. L., 2015. Estimating Soil Erosion in Sub-Saharan Africa Based on Landscape Similarity Mapping and Using the Revised Universal Soil Loss Equation (RUSLE),” Nutr Cycl Agroecosyst, 102, 17–31.
  • 20. Loureiro N.S and Coutinho M.A., 2001. A New Procedure to Estimate the RUSLE EI30 index, based on Monthly Rainfall Data and Applied to the Algarve Region, Portugal, Journal of hydrology 250, 12–18.
  • 21. Maria K, Pantelis S. and Filippos V., 2008. Soil Erosion Prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece, Environ Geol-1318-9.
  • 22. Meusburger, K. Steel, A., Panagos, P., Montanarella, L. and Alewell C., 2012. Spatial and Temporal Variability of Rainfall Erosivity Factor for Switzerland, Hydrol. Earth Syst. Sci., 16, 167–177.
  • 23. Ming-Hsi L. and Huan-Hsuan L. 2015. Evaluation of Annual Rainfall Erosivity Index Based on Daily, Monthly, and Annual Precipitation Data of Rainfall Station Network in Southern Taiwan, International Journal of Distributed Sensor Networks, Article ID 214708, 15 pages,
  • 24. Mikos, M., Jost, D., and Petkovsek, G. 2006. Rainfall and Runoff Erosivity in the alpine Climate of North Slovenia: A Comparison of Different Estimation Methods, Hydrol. Sci. J., 51, 115–126.
  • 25. Mikhailova, E.A., Bryant, R.B., Schwager, S.J. and Smith, S.D. 1997. Predicting Rainfall Erosivity in Honduras,” Soil Science Society of America Journal, 61(1), 273–279.
  • 26. Morgan R.P.C., Soil Erosion and Conservation. Longma, Essex, p. 298, 1986.
  • 27. Oh, J.H. and Jung, S.G., 2005. Potential Soil Prediction for Land Resource Management in the Nakdong River basin. J. Korea Soc. Rural Plan. 11(2), 9–19.
  • 28. Othman, J, Mohd, E. T. Shaifah-Mastura, S.A.., Muhammad, B. G., Pan, L. L., Pauszi, A., Mohd, K.A.K and Nor A.A.A., 2010. Modeling the Impact of Ringlet Reservoir on Downstream Hydraulic Capacity of Bertam River Using XPSWMM in Cameron Highlands, Malaysia”, Research Journal of Applied Sciences, 5(2), 47–53.
  • 29. Quinton, J.N., Catt, J.A. and Hess, T.M., 2001. The Selective Removal of Phosphorus from Soil: is Event Size Important? J. Environ. Qual. 30, 538–545.
  • 30. Ranya, F, Abdalla, E., Sarra, O. and Abdel-Rahim, E., 2015. Soil Erosion Risk Map Based on Geographic Information System and Universal Soil Loss Equation (Case Study: Terengganu, Malaysia)”, Ind. J. Sci. Res. and Tech. 3(2), 38–43.
  • 31. Renard K.G. and Freimund J.R. 1994. Using Monthly Precipitation Data to Estimate the R Factor in the Revised USLE. J Hydrol 157, 287–306.
  • 32. Renard, K.G., Foster, G.R., and Weesies, G.A. 1997. Predicting Soil Erosion by Water; a Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agriculture Handbook No. 703, USDA-ARS, 404 pp.
  • 33. Soo, H.T., 2011. Soil Erosion Modeling using RUSLE and GIS on Cameron Highlands, Malaysia for Hydropower Development, Master´s thesis Submitted to School for Renewable Energy Science in affiliation with University of Iceland & University of Akureyri.
  • 34. Souyoung P., Cheyoung O., Seongwoo J., Huicheul J and Chuluong, C., 2011. Soil Erosion Risk in Korean Watersheds, Assessed using the Reversed Universal Soil Loss Equation, Journal of hydrology, 399(3-4), 263–273.
  • 35. Terranova, O., Antronico, L., Coscarelli, R. and Iaquinta P., 2009. Soil Erosion Risk Scenarios in the Mediterranean Environment using RUSLE and GIS: An Application Model for Calabria (southern Italy), Geomorphology 112, 228–245.
  • 36. Torri D, Booselli L, guzzetti F, Calzalari C, Bazzoffi P, Ungaoro F, Bartolini D, Salvador-Sanchis M.P, 2006. Soil Eroision in Italy: An Overview in Soil Erosion in Europe, Boardman J, Poesen J (eds) Wiley NY, 245–261.
  • 37. Valentin C., Poesen J and Yong L. 2005. Gully Erosion: Impact, Factors and Control, Catena 63, 132–153.
  • 38. Vandekerckhove, B. 2006. Estimation of Sediment Transport in a Watershed in an Arid Region of North Chile. MSc. Thesis. Ghent University, Belgium, 115 pp.
  • 39. Wischmeier, W.H. and Smith, D.D., 1978. Predicting Rainfall Erosion Losses – A Guide to Conservation Planning. Agric. Handbook No. 537, Washington D.C., 58.
  • 40. Williams, J. R., 1975. Sediment-Yield Prediction with Universal Equation Using Runoff Energy Factor. Present and Prospective Technology for Predicting Sediment Yields and Sources, ARS-S-40, US Department of Agriculture, Agricultural Research Service, 244–252.
  • 41. Yu, B. and Rosewell, C.J., 1996. An Assessment of a Daily Rainfall Erosivity Model for New South Wales. Aust J Soil Res 34, 139–152.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ee663ae-ce46-47aa-b96d-ed18ee9d880d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.