PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bezzałogowe aparaty latające UAV w fotogrametrii i teledetekcji – stan obecny i kierunki rozwoju

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Unmanned aerial vehicles in photogrammetry and remote sensing – state of the art and trends
Języki publikacji
PL
Abstrakty
PL
W ostatnich kilku latach nowym, interdyscyplinarnym obszarem nauki i badań jest konstrukcja oraz praktyczne zastosowanie w geomatyce bezzałogowych aparatów latających UAV (Unmanned Aerial Vehicle). Bezzałogowce umożliwiają wykonanie kampanii fotolotniczych niskiego pułapu dla niewielkich obszarów i szybkie, wieloczasowe pozyskanie wysokorozdzielczych danych obrazowych w różnych zakresach spektralnych oraz potencjalnie danych z UAV-skaningu laserowego (UAV-borne Laser Scanning). Nowa technika akwizycji danych i możliwy szeroki zakres aplikacji aparatów latających UAV w pozyskiwaniu geoinformacji znalazły swoje odzwierciedlenie w problematyce badawczej międzykomisyjnej grupy roboczej ICWG I/V Unmanned Vehicle Systems (UVS) for Mapping and Monitoring Applications Międzynarodowego Towarzystwa Fotogrametrii i Teledetekcji (ISPRS). W pracy przedstawiono syntetyczne omówienie: budowy aparatów latających UAV na przykładzie typowych konstrukcji, analizę sensorów instalowanych na ich platformach, technologie fotogrametryczne i teledetekcyjne oraz rodzaje aplikacji w geomatyce, które wykorzystują pozyskane optyczne dane multisensoralne i dane LiDAR, techniczne aspekty zastosowania UAV, aktualne problemy badawcze i tendencje rozwoju systemów bezzałogowych UVS (Unmanned Vehicle Systems).
EN
Designing and practical application of Unmanned Aerial Vehicles (UAVs) in geomatics is a new interdisciplinary field of science and research, which arose in last years. UAVs enable execution of small areas low altitude photo shoots as well as fast obtaining of multitemporary high resolution image data in various spectral range. Potentially UAV-borne Laser Scanning is also possible. New techniques of data acquisition and wide range of possible applications of UAVs in obtaining geoinformation are the subject of research of ISPRS Intercommission Working Group I/V Unmanned Vehicle Systems (UVS) for Mapping and Monitoring Applications. The paper synthetically reviews recent developments in the field of Unmanned Vehicle Systems and outlines further directions of research. It presents construction of typical UAVs and analysis of sensors installed on their platforms. Moreover it describes photogrammetric and remote sensing technologies and various kinds of applications in geomatics which base on optical multisensoral and LiDAR data and technical aspects of UAVs application.
Rocznik
Tom
Strony
365--376
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Katedra Fotogrametrii i Teledetekcji, Uniwersytet Warmińsko-Mazurski w Olsztynie, tel.: +89 5233282
Bibliografia
  • 1. Akhtman Y., Garg A., Skaloud J., 2011. MAV-based real-time localization of terrestrial targets with cm-level accuracy: feasibility study. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 2. Barazzetti L., Remondino F., Scaioni M., Brumana R., 2010. Fully automatic UAV image – based sensor orientation. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 1, ICWG I/V.
  • 3. Blaha M., Eisenbeiss H., Grimm D., Limpach P., 2011. Direct georeferencing of UAVS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 4. Bulatov D., Solbrig P., Gross H., Wernerus P., Repasi E., Heipke C., 2011. Context-based urban terrain reconstruction from UAV-videos for geoinformation applications. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 5. Clark A. F., Woods J. C., Oechsle O., 2010. A low-cost airborne platform for ecological monitoring. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5, Com. V.
  • 6. Conte G., Doherty P., 2011. A visual navigation system for UAS based on geo-referenced imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 7. Coppa U., Guarnieri A., Camarda M., Vettore A., 2010. Development of Unmanned Aerial Vehicle at Padova University. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5, Com. V.
  • 8. Cropcam, 2011.www.cropcam.com
  • 9. Draganfly, 2011. www.draganfly.com
  • 10. Eck C., Imbach B., 2011. Aerial magnetic sensing with an UAV helicopter. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 11. Eisenbeiss H., 2009. UAV Photogrammetry. Diss., ETH Zürich, IGP Mitteilungen, Nr. 105.
  • 12. Eisenbeiss H., Sauerbier M., Püschel H., 2008. Kombinierte Auswertung von terrestrischen und UAVBildern für die 3DModellierung des Schlosses Landenberg. Photogrammetrie/ Fernerkundung, Geomatik Schweiz, Nr. 9, s. 470–473.
  • 13. Everaerts J., Lewyckyj N., 2011. Obtaining a permit-to-fly for a HALE-UAV in Belgium. ISPRS, 2011. www.isprs.org
  • 14. Haala N., Cramer M., Weimer F., Trittler M., 2011. Performance test on UAV-based photogrammetric data collection. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 15. Küng O., Strecha C., Beyeler A., Zufferey J.-C., Floreano D., Fua P., Gervaix F., 2011.The accuracy of automatic photogrammetric techniques on ultra-light UAV imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 16. Manyoky M., Theiler P., Steudler D., Eisenbeiss H., 2011. Unmanned Aerial Vehicle in cadastral applications. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 17. Microdrones, 2011. www.microdrones.com.
  • 18. Molina P., Colomina I., Vitoria T., Silva P. F., Stebler Y., Skaloud J., Kornus W., Prades R., 2011. EGNOS-based multi-sensor accurate and reliable navigation in Search-And-Rescue missions with UAVS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 19. Nackaerts K., Delauré B., Everaerts J., Michiels B., Holmlund C., Mäkynen J., Saari H., 2010. Evaluation of a lightweigth UAS-prototype for hyperspectral imaging. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 1, ICWG I/V.
  • 20. Neitzel F., Klonowski J., 2011. Mobile 3D mapping with a low-cost UAV system. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 21. Nuechter, A., Lingemann, K., Hertzberg, J., Surmann, H., 2007. 6D SLAM for 3D mapping outdoor environments. Journal of Field Robotics (JFR), Special Issue on Quantitative Performance Evaluation of Robotic and Intelligent Systems, Vol. 24 (8-9), s. 699–722.
  • 22. Pegasus, 2011. www.pegasus4europe.com.
  • 23. Rieke M., Förster T., Geipel J., Prinz T., 2011. High-precision positioning and real-time data processing of UAV-systems. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 24. Rosnell T., Honkavaara E., Nurminen K., 2011. On geometric processing of multi-temporal image data collected by light UAV Systems. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 25. Sauerbier M., Eisenbeiss H., 2010. UAVs for the documentation of archaeological excavations. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5, Com. V.
  • 26. Sauerbier M., Siegrist E., Eisenbeiss H., Demir N., 2011.The practical application of UAVbased photogrammetry under economic aspects. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 27. Scholtz A., Kaschwich C., Krüger A., Kufieta K., Schnetter P., Wilkens C. S., Krüger T., Vörsmann P., 2011. Development of a new multi-purpose UAS for scientific application. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 28. Steffen, R., Förstner, W., 2008. On visual real time mapping for unmanned aerial vehicles. International Archives of Photogrammetry, Remote Sensing and Spatial Information, Vol. XXXVII Part 3a, s. 57–62.
  • 29. Szczechowski B., 2008. Wykorzystanie bezzałogowych aparatów latających (mini śmigłowców) do wykonywania fotogrametrycznych zdjęć lotniczych z niskich pułapów. Archiwum Fotogrametrii, Kartografii i Teledetekcji, Vol. 18b, s. 569–579.
  • 30. Thamm H.P., 2011. SUSI62 a robust and safe parachute UAV with long flight time and good payload. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 31. Tsai L. M., Chiang K. W., Huang W. Y., Lin Y. S. Tsai J. S., Lo C. F. Lin Y. S. Wu C. H., 2010. The development of a direct georeferencing ready UAV based photogrammetry platform. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 1, ICWG I/V.
  • 32. UAS, 2011. Unmanned Aircraft Systems. The Global Perspective 2011/2012, 9th Edition. International UAS Community.
  • 33. Witayangkurn A., Nagai M., Honda K., Dailey M., Shibasaki R., 2011. Real-time monitoring system using Unmanned Aerial Vehicle integrated with sensor observation service. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 34. Wefelscheid C., Hänsch R., Hellwich O., 2011. Three-dimensional building reconstruction using images obtained by Unmanned Aerial Vehicles. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22.
  • 35. Zmarz A., 2011. Zastosowanie bezzałogowych statków latających do pozyskania danych obrazowych o lesie. Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, SGGW w Warszawie (praca doktorska).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec752929-e2b1-4111-b77d-938cc6108bfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.