Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Subcritical flows over highway and railway embankments, commonly encountered during flood events, can be treated like submerged flows over trapezoidal-shaped weirs. In earlier studies, the equation of the submerged-flow discharge for such types of weirs was developed as a function of the degree of submergence and free-flow discharge. However, the application of this equation in practice requires a pre-determined discharge from experiments performed under free-flowconditions. In this study, a discharge equation was deduced from the streamwise momentum balance equation, which overcomes the drawback of the previous approaches. The results of the validation demonstrated that the proposed equation is capable of predicting the submerged-flow discharge of a trapezoidal-shaped weir within 6:0% of the measured value. Furthermore, the most prominent features of the submerged overflows were examined by systematically analyzing the experimental data. For such flows, the free-surface and bed-pressure profiles are self-similar only over the upstream face of the weir. Results of this investigation confirmed that the degree of submergence and the slope of the downstream weir face significantly affect the characteristics of the submerged flow, but the effect of the latter on the non-modular discharge is marginal.
Rocznik
Tom
Strony
1--16
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
- David & James – Engineering and Environmental Consultancy, 204 Albion Road, Vic 3350, Australia
Bibliografia
- Abou-Seida M. M., Quraishi A. A. (1976) A flow equation for submerged rectangular weirs, Proc. Instn. Civ. Eng., 61 (4), 685–696.
- Biegowski J., Paprota M., Sulisz W. (2020) Particle image velocimetry measurements of flow over an ogee-type weir in a hydraulic flume, Int. J. Civ. Eng., 18, 1451–1462.
- Bos M. G. (1989) Discharge Measurement Structures, 3rd rev. ed., International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands.
- Curtis K.W. (2016) Size-Scale Effect on LinearWeir Hydraulics, Master’s Thesis, Utah StateUniversity, Logan, UT, USA.
- Fritz H. M., HagerW. H. (1998) Hydraulics of embankment weirs, J. Hydraul. Eng., 124 (9), 963–971.
- Hager W. H. (1994a) Breitkroniger ¨uberfall (Broad-crested weir), Wasser Energie Luft, 86 (11–12), 363–369 [in German].
- Hager W. H. (1994b) Damm¨uberf¨alle (Dam overflows), Wasser und Boden, 45 (2), 33–36 [in German].
- Hager W. H., Schwalt M. (1994) Broad-crested weir, J. Irrig. Drain. Eng., 120 (1), 13–26.
- Hager W. H. (2010) Wastewater Hydraulics–Theory and Practice, 2nd ed., Springer-Verlag, Berlin Heidelberg, Germany.
- Hakim S. S., Azimi A. H. (2017) Hydraulics of submerged triangular weirs and weirs of finite-crest length with upstream and downstream ramps, J. Irrig. Drain. Eng., 143 (8), doi:10.1061/(ASCE)IR.1943-4774.0001207.
- Huang S. L., Ng C.-O. (2007) Hydraulics of a submergedweir and applicability in avigational channels: Basic flow structures, Int. J. Numer. Methods Eng.,69, 2264–2278.
- Karim R. A., Mohammed J. R. (2020) A comparison study between CFD analysis and PIV technique for velocity distribution over the standard ogee crested spillways, Heliyon, 6 (10), doi:10.1016/j.heliyon.2020.e05165.
- Kindsvater C. E. (1964) Discharge Characteristics of Embankment-Shaped Weirs, Geological Survey Water-Supply Paper 1617-A, U.S. Government Printing Office, Washington, DC, USA.
- Lasdon L. S., Fox R. L., Ratner M. W. (1974) Non-linear optimization using the generalized reduced gradient method, Revue Fr. d’Automatique Inform. Rech. Op´er., 3 (8), 73–103.
- Pedersen Ø., Fleit G., Pummer E., Tullis B. P., R¨uther N. (2018) Reynolds-averaged Navier-Stokes modeling of submerged ogee weirs, J. Irrig. Drain. Eng., 141 (1), doi:10.1061/(ASCE)IR.1943-4774.0001266.
- Peltier Y., Dewals B., Archambeau P., Pirotton M., Erpicum S. (2018) Pressure and velocity on an ogee spillway crest operating at high head ratio: Experimental measurements and validation, J. Hydro-Environ. Res., 19, 128–136.
- Pinto N.-L. de S., Ota J. J. (1980) Distribuic¸˜ao das press˜oes na face de jusante das barragens de enrocamento submersas – Investigac¸ ˜ao experimental (Pressure distribution on the downstream face of submerged rockfill dams – Experimental investigation), Em Procedimentos do dia IX Congresso Latinoamericano Hidr´aulica, M´erida, Venezuela, 30 Junho – 4 Julho, 529–540 [in Portuguese].
- Prawel S. P. (1958) Discharge Characteristics of an Embankment-Shaped Weir, Master’s Thesis, Georgia Institute of Technology, Atlanta, GA, USA.
- Qian S., Zhang Y., Xu H., Wang X., Feng J., Li Z. (2021) Effects of surface roughness on overflow discharge of embankment weirs, J. Hydrodynam., 33 (4), 773–781.
- Rajaratnam N., Muralidhar D. (1969) Flow below deeply submerged rectangular weirs, J. Hydraul. Res., 7 (3), 355–374.
- Sargison J. E., Percy A. (2009) Hydraulics of broad-crested weirs with varying side slopes, J. Irrig. Drain. Eng., 135 (1), 115–118.
- Skogerboe G. V., Hyatt M. L., Austin H. L. (1966) Stage-Fall-Discharge Relations for Flood Flows over Highway Embankments, Report PR-WR6-7, UtahWater Research Laboratory, College of Engineering, Utah State University, Logan, UT, USA.
- Smith R. A. (1959) Calibration of a submerged broad-crested weir, J. Hydraul. Div., 85 (HY3), 1–16.
- Thomas W. A. (1966) Discharge Coefficients for Submerged, Broad-Crested Weirs, Master’s Thesis, Massachusetts Institute of Technology, Boston, MA, USA.
- Vennard J. K., Weston R. F. (1943) Submergence effect on sharp-crested weirs, Eng. News-Rec., 130 (22), 814–816.
- Zerihun Y. T. (2004) A One-Dimensional Boussinesq-Type Momentum Model for Steady Rapidly-Varied Open-Channel Flows, Ph.D. Thesis, Department of Civil and Environmental Engineering, The University of Melbourne, Vic, Australia.
- Zerihun Y. T., Fenton J. D. (2007) A Boussinesq-type model for flow over trapezoidal profile weirs, J. Hydraul. Res., 45 (4), 519–528.
- Zerihun Y. T. (2020) Free flow and discharge characteristics of trapezoidal-shaped weirs, Fluids, 5 (4), doi:10.3390/fluids5040238.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-71cfbe01-5494-4ea0-881b-bb3371c7df91