PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Glycerolysis-Interesterification of Palm Olein and Coconut Oil Blend using Two High-Shear Continuous Stirred Tank Reactors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to synthesize structured lipids containing high mono- and diacylglycerol by glycerolysis-interesterification of palm olein and coconut oil blend in two high-shear continuous stirred tank reactors in series. The result showed that various flow rates of 11 mL/min to 23 mL/min did not significantly increase mono- and diacylglycerol concentration, while at a flow rate of 26 mL/min only a low concentration of mono- and diacylglycerol was formed. However, a flow rate 20 mL/min and an agitating speed of 2000 rpm produced mono- and diacylglycerol concentration of 61.7% with the highest productivity of 2.1%/min and a triacylglycerol conversion of 64.6%. The slip melting point, melting point, hardness, emulsion capacity, and stability were 23.77 °C, 30 °C, 14.6 N, 65.15%, and 59.15%, respectively. The product’s solid fat content at 25 °C was lower than cocoa butter. The product contained β’ and β crystals, thus it can be applied as a cocoa butter substitute.
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wz.
Twórcy
  • Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada Yogyakarta, Indonesia
autor
  • Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada Yogyakarta, Indonesia
autor
  • Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada Yogyakarta, Indonesia
  • Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada Yogyakarta, Indonesia
  • Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada Yogyakarta, Indonesia
Bibliografia
  • 1. Wangi, I.P., Supriyanto, S., Sulistyo, H. & Hidayat, C. (2022). Sodium Silicate Catalyst for Synthesis Monoacylglycerol and Diacylglycerol-Rich Structured Lipids: Product Characteristic and Glycerolysis–Interesterification Kinetics. Bull. Chem. Reaction Engin. & Catal., 17(2) 250–262, DOI: 10.9767/bcrec.17.2.13306.250-262.
  • 2. Echeverri, D.A., Cardeño, F. & Rios, L.A. (2011). Glycerolysis of soybean oil with crude glycerol containing residual alkaline catalysts from biodiesel production .JAOCS, J. Amer. Oil Chem.’ Soc. 88(4), 551–557, DOI: 10.1007/s11746-010-1688-5.
  • 3. Ferretti,. C.A., Spotti, M.L. & Di Cosimo, J.I. (2018). Diglyceriderich oils from glycerolysis of edible vegetable oils \. Catal Today 302, 233–241, DOI: 10.1016/j.cattod.2017.04.008.
  • 4. Sulistiya, E, Yanti, R. & Hidayat, C. (2022). Chemical synthesis mono-and diacylglycerol from palm stearin-olein blend using continuous high shear stirred tank reactor. Adv. Food Sci., Sustain. Agric. and Agroind. Engin., (2) 144–153.
  • 5. de Paula, A.V., Nunes, G.F.M., de Castro, H.F. & dos Santos, J.C. (2018). Performance of packed bed reactor on the enzymatic interesterifi cation of milk fat with soybean oil to yield structure lipids. Int. Dairy J., 86 1–8, DOI: 10.1016/J.IDAIRYJ.2018.06.014.
  • 6. Hashemzadeh, Gargari, M. & Sadrameli, S.M. (2018). Investigating continuous biodiesel production from linseed oil in the presence of a Cosolvent and a heterogeneous based catalyst in a packed bed reactor. Energy 148, 888–895, DOI: 10.1016/J.ENERGY.2018.01.105.
  • 7. Li, Z.H., Lin, P.H.., Wu, J.C.S., Huang, Y.T., Lin, K.S. & Wu, K.C.W. (2013). A stirring packed-bed reactor to enhance the esterification-transesterification in biodiesel production by lowering mass-transfer resistance. Chem. Engin. J. 234, 9–15, DOI: 10.1016/j.cej.2013.08.053.
  • 8. Miotti, R.H., Cortez, D.V. & De Castro, H.F. (2022). Transesterification of palm kernel oil with ethanol catalyzed by a combination of immobilized lipases with different specificities in continuous two-stage packed-bed reactor. Fuel 310, 122343, DOI: 10.1016/J.FUEL.2021.122343.
  • 9. Zhang, Z., Lee, W.J., Sun, X. & Wang, Y. (2022). Enzymatic interesterification of palm olein in a continuous packed bed reactor: Effect of process parameters on the properties of fats and immobilized Thermomyces lanuginosus lipase. LWT, DOI: 10.1016/j.lwt.2022.113459.
  • 10. Kalu, E.E., Chen, K.S. & Gedris, T. (2011). Continuous-flow biodiesel production using slit-channel reactors. Biores. Technol., 102(6), 4456–4461, DOI: 10.1016/J.BIORTECH.2010.12.097.
  • 11. Junior, I.I., Flores, M.C., Sutili F.K., Leite,, S.G.F., Leandro, L.S., Leal, I.C.R. & De Souza ROMA. (2012). Fatty acids residue from palm oil refining process as feedstock for lipase catalyzed monoacylglicerol production under batch and continuous flow conditions. J. Mol. Catal. B Enzym. 77, 53–58, DOI: 10.1016/J.MOLCATB.2012.01.008.
  • 12. Nasir, N.F., Daud, W.R.W., Kamarudin S.K. & Yaakob, Z. (2014). Methyl Esters Selectivity of Transesterification Reaction with Homogenous Alkaline Catalyst to Produce Biodiesel in Batch, Plug Flow, and Continuous Stirred Tank Reactors. Internat. J. Chem. Engin., DOI: 10.1155/2014/931264.
  • 13. Kouzu, M., Fujimori, A., Fukakusa, R. ta, Satomi, N. & Yahagi, S. (2018). Continuous production of biodiesel by the CaO-catalyzed transesterification operated with continuously stirred tank reactor. Fuel Process. Technol., 181, 311–317, DOI: 10.1016/J.FUPROC.2018.10.008.
  • 14. Komers, K., Skopal, F. & Čegan, A. (2010). Continuous biodiesel production in a cascade of flow ideally stirred reactors. Biores., Technol., 101(10), 3772–3775, DOI: 10.1016/J.BIORTECH.2009.12.099.
  • 15. Fonseca, F.A.S., Vidal-Vieira J.A. & Ravagnani S.P. (2010). Transesterification of vegetable oils: Simulating the replacement of batch reactors with continuous reactors. Biores. Technol.,101(21), 8151–8157, DOI: 10.1016/j.biortech.2010.05.077.
  • 16. Phuah, E.T., Tang, T.K., Lee, Y.Y., Choong, T.S.Y/, Tan, C.P. & Lai, OM. (2015). Review on the Current State of Diacylglycerol Production Using Enzymatic Approach. Food Bioproc. Tech., 8(6), 1169–1186, DOI: 10.1007/s11947-015-1505-0.
  • 17. Darnoko, D. & Cheryan, M. (2000). Continuous production of palm methyl esters. J. Amer. Oil Chem. Soc. 77(12), 1269–1272. DOI: 10.1007/s11746-000-0199-x.
  • 18. Arranz-Martínez, P., Corzo-Martínez, M., Vázquez, L., Reglero, G. & Torres, C.F. (2018). Lipase catalyzed glycerolysis of ratfish liver oil at stirred tank basket reactor: A kinetic approach. Process Biochem., 64, 38–45. DOI: 10.1016/J.PROCBIO.2017.09.026.
  • 19. Klumperman, B. & Heuts, J.P.A. (2020). The solution copolymerization of styrene and maleic anhydride in a continuous stirred tank reactor and its theoretical modelling. Polymer (Guildf) 202, 122730. DOI: 10.1016/J.POLYMER.2020.122730.
  • 20. Esteban, L., Muñío, M. del M., Robles, A., Hita, E., Jiménez, M.J., González, P.A., Camacho, B. & Molina, E. (2009). Synthesis of 2-monoacylglycerols (2-MAG) by enzymatic alcoholysis of fish oils using different reactor types. Biochem. Eng. J., 44(2–3), 271–279. DOI: 10.1016/J.BEJ.2009.01.004.
  • 21. Ri, P.C., Ren, N.Q., Ding, J., Kim, J.S., & Guo, W.Q. (2017). CFD optimization of horizontal continuous stirredtank (HCSTR) reactor for bio-hydrogen production. Int. J. Hydrogen. Energy, 42(15), 9630–9640. DOI: 10.1016/J.IJHYDENE.2017.02.035.
  • 22. Zhang, Z., Lee, W.J., Zhou, H. & Wang,. Y. (2019). Effects of chemical interesterification on the triacylglycerols, solid fat contents and crystallization kinetics of palm oil-based fats. Food Funct 10(11), 7553–7564. DOI: 10.1039/c9fo01648a.
  • 23. Subroto, E., Supriyanto, Utami, T. & Hidayat, C. (2019). Enzymatic glycerolysis–interesterification of palm stearin–olein blend for synthesis structured lipid containing high mono- and diacylglycerol. Food Sci. Biotechnol. 28(2), 511–517, DOI: 10.1007/s10068-018-0462-6.
  • 24. Motamedzadegan, A., Dehghan, B., Nemati, A., Tirgarian, B. & Safarpour, B. (2020). Functionality improvement of virgin coconut oil through physical blending and chemical interesterification. SN Appl. Sci. DOI: 10.1007/s42452-020-03309-6.
  • 25. Wangi, I.P., Supriyanto, Sulistyo, H. & Hidayat, C. (2023). Glycerolysis–interesterification in high-shear reactor using sodium silicate catalyst: effect of mixing rate on reaction kinetics. Reaction Kinetics, Mechanisms and Catalysis, DOI: 10.1007/s11144-023-02383-2.
  • 26. Subroto, E., Indiarto, R., Wulandari, E. & Azimah, H.N. (2021). Oil to glycerol ratio in enzymatic and chemical glycerolysis for the production of mono- And diacylglycerol. Internat. J. Engineering Trends and Technol., 69(8), 117–125, DOI: 10.14445/22315381/IJETT-V69I8P215.
  • 27. Subroto, E., Indiarto, R., Pangawikan, A.D., Lembong, E. & Hadiyanti, R. (2021). Types and concentrations of catalysts in chemical glycerolysis for the production of monoacylglycerols and diacylglycerols. Adv. Sci., Technol. Engin. Systems 6(1), 612–618. DOI: 10.25046/aj060166.
  • 28. Puspita, Arum, A., Hidayat, C. & Supriyanto, (2019). Synthesis of Emulsifier from Refined Bleached Deodorized Palm Stearin by Chemical Glycerolysis in Stirred Tank Reactor. KnE Life Sciences 4(11), 130. DOI: 10.18502/kls.v4i11.3859.
  • 29. AOCS. (1997). Official Methods and Recommended Practices of the American Oil Chemist’s Society, Physical and Chemical Characteristics of Oils, Fats and Waxes, Section 1.
  • 30. Biswas, N, Cheow, Y.L., Tan, C.P. & Siow, L.F. (2017). Physical, rheological and sensorial properties, and bloom formation of dark chocolate made with cocoa butter substitute (CBS). LWT 82, 420–428, DOI: 10.1016/j.lwt.2017.04.039.
  • 31. Cano-Medina, A., Jiménez-Islas, H., Dendooven, L., Herrera, R.P., González-Alatorre, G. & Escamilla-Silva, E.M. (2011). Emulsifying and foaming capacity and emulsion and foam stability of sesame protein concentrates. Food Res. Internat. 44(3), 684–692. DOI: 10.1016/j.foodres.2010.12.015.
  • 32. Márquez, A.L., Pérez, M.P. & Wagner, J.R. (2013). Solid fat content estimation by differential scanning calorimetry: Prior treatment and proposed correction. JAOCS, J. Amer. Oil Chem. Soc. 90(4), 467–473. DOI: 10.1007/s11746-012-2190-z.
  • 33. Norizzah, A.R., Nur, Azimah, K. & Zaliha, O. (2018)Influence of enzymatic and chemical interesterifi cation on crystallisation properties of refined, bleached and deodourised (RBD) palm oil and RBD palm kernel oil blends. Food Res. Internat., 106, 982–991. DOI: 10.1016/J.FOODRES.2018.02.001.
  • 34. Carlucci, C. (2022). An Overview on the Production of Biodiesel Enabled by Continuous Flow Methodologies. Catalysts. DOI: 10.3390/CATAL12070717.
  • 35. Krisnangkura, K. & Simamaharnnop, R. (1992). Continuous Transmethylation of Palm Oil in an Organic Solvent.
  • 36. Sivakanthan, S., Jayasooriya, A.P. & Madhujith, T. (2019). Optimization of the production of structured lipid by enzymatic interesterification from coconut (Cocos nucifera) oil and sesame (Sesamum indicum) oil using Response Surface Methodology. LWT 101, 723–730, DOI: 10.1016/J.LWT.2018.11.085.
  • 37. Zhang, Z., Wang, Y., Ma, X., Wang, E., Liu, M. & Yan, R. (2015). Characterisation and oxidation stability of monoacylglycerols from partially hydrogenated corn oil. Food Chem., 173, 70–79. DOI: 10.1016/J.FOODCHEM.2014.09.155.
  • 38. Gunstone, F. (2004). THE CHEMISTRY OF OILS AND FATS Sources, Composition, Properties and Uses. In Crop Research. CRC.
  • 39. Bariwere, Samuel, C., Joy, E.E. & Davidm, Barine, K.K. (2018). Effect of Chemical Interesterifi cation on the Physicochemical Characteristics and Fatty Acid Profile of Bakery Shortening Produced from Shea Butter and Fluted Pumpkin Seed Oil Blend. Americ. J. Food Sci. and Technol. 6(4), 187–194, DOI: 10.12691/ajfst-6-4-8.
  • 40. Soares, FASDM, Da Silva, R.C., Hazzan, M., Capacla, I.R., Viccola, E.R., Maruyama, J.M. & Gioielli, L.A. (2012).Chemical interesterification of blends of palm stearin, coconut oil, and canola oil: Physicochemical properties. J. Agric. Food Chem., 60(6), 1461–1469. DOI: 10.1021/jf204111t.
  • 41. Kowalska, M., Żbikowska, A. & Kowalski, B. (2014). Enzymatically Modified Fats Based on Mutton Tallow and Rapeseed Oil Suitable for Fatty Emulsions JAOCS, J. Americ. Oil Chem. Soc. 91(10), 1703–1710. DOI: 10.1007/s11746-014-2512-4.
  • 42. Biswas, N., Cheow, Y.L., Tan, C.P. & Siow, L.F. (2018). Physicochemical Properties of Enzymatically Produced Palm-Oil-Based Cocoa Butter Substitute (CBS) With Cocoa Butter Mixture. Europ. J. Lipid Sci. Technol. DOI: 10.1002/ejlt.201700205.
  • 43. Kadivar, S., De Clercq, N., Mokbul, M. & Dewettinck, K. (2016). Influence of enzymatically produced sunflower oil based cocoa butter equivalents on the phase behavior of cocoa butter and quality of dark chocolate. LWT 66 48–55, DOI: 10.1016/j.lwt.2015.10.006.
  • 44. Basso, R.C., Ribeiro, A.P.B., Masuchi, M.H., Gioielli, LA, Gonçalves, L.A.G., Santos, A.O/ dos, Cardoso, L.P. & Grimaldi, R. (2010). Tripalmitin and monoacylglycerols as modifiers in the crystallisation of palm oil. Food Chem., 122(4), 1185–1192. DOI: 10.1016/j.foodchem.2010.03.113.
  • 45. Saberi, A.H., Tan, C.P. & Lai, O.M. (2011). Phase behavior of palm oil in blends with palm-based diacylglycerol. JAOCS, J. Amer. Oil Chem. Soc., 88(12), 1857–1865. DOI: 10.1007/s11746-011-1860-6.
  • 46. Biswas, N., Cheow, Y.L., Tan, C.P. & Siow, L.F. (2016). Blending of Palm Mid-Fraction, Refined Bleached Deodorized Palm Kernel Oil or Palm Stearin for Cocoa Butter Alternative. JAOCS, J. Amer. Oil Chem. Soc., 93(10), 1415–1427. DOI: 10.1007/s11746-016-2880-z.
  • 47. Le Révérend, B.J.D., Fryer, P.J., Coles, S. & Bakalis, S. (2010). A method to qualify and quantify the crystalline state of cocoa butter in industrial chocolate. JAOCS, J. Amer. Oil Chem. Soc. 87(3), 239–246. DOI: 10.1007/s11746-009-1498-9.
  • 48. Jahurul, H.A.M., M.R N, F.S. A., Shaarani, S., Mamat H., Lee J.S., Norliza, J., Mansoor, A.H., Selamat, J., Khan, F., Matanjun, P. & Islam, Sarker, M.Z. (2020). Hard Fats Improve the Physicochemical and Thermal Properties of Seed Fats for Applications in Confectionery Products. Food Rev. Internat.,36(6), 601–625. DOI: 10.1080/87559129.2019.1657443.
  • 49. Chen, Y., Wang, Y., Jin, J., Jin, Q., Akoh, C.C. & Wang, X. (2022). Formation of dark chocolate fats with improved heat stability and desirable miscibility by blending cocoa butter with mango kernel fat stearin and hard palm-mid fraction. LWT, DOI: 10.1016/j.lwt.2022.113066.
  • 50. De Clercq, N., Kadivar, S., Van de Walle, D., De Pelsmaeker, S., Ghellynck, X. & Dewettinck, K. (2017). Functionality of cocoa butter equivalents in chocolate products. Europ. Food Res. Technol. 243(2), 309–321. DOI: 10.1007/s0021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e74de57-8571-4f17-973c-400c265ce041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.