Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ na środowisko kompozytów geopolimerowych na bazie odpadów : wymywalność metali ciężkich i ocena ryzyka
Języki publikacji
Abstrakty
Geopolymers are a relatively new type of material that can be produced from waste. They may contain hazardous compounds, such as heavy metals, which pose environmental risks if released. This study presents the results of heavy metal release from molded geopolymer composites over time and evaluates the leaching mechanisms of various elements. The study also assesses the potential ecological risk of these materials, highlighting the innovative and complex nature of the research program. The geopolymer composites were produced from silica fly ash (CFA) and waste glass powder (GP), with their composition further modified using graphene and nanosilica. The study investigated materials with innovative compositions that could effectively replace traditional Portland cement-based concrete, whose production significantly contributes to carbon emissions. Leachability was assessed using the tank test method. Among the ten metals analyzed, the geopolymer composites released Ba, Cr, Mo, and Sb. The study demonstrated that the leaching process was primarily controlled by dissolution and diffusion; however, for Ba and Mo, depletion of available ions for leaching was also observed. The potential Ecological Risk Index (PERI) ranged from 21.4 to 34.5 depending on the geopolymer composition. The ecological risk analysis indicated no environmental threat from the geopolymer composites.
Geopolimery to stosunkowo nowy rodzaj materiałów, które można wytwarzać z odpadów. Materiały te mogą zawierać niebezpieczne związki, takie jak metale ciężkie, które stwarzają potencjalne zagrożenie dla środowiska w przypadku ich uwolnienia. W pracy przedstawiono wyniki uwalniania metali ciężkich z formowanych kompozytów geopolimerowych w funkcji czasu oraz w celu oceny mechanizmów wymywania poszczególnych pierwiastków. W badaniu oceniono również potencjalne ryzyko ekologiczne badanych materiałów. Kompozyty geopolimerowe wytworzono na bazie popiołu lotnego krzemionkowego (CFA) i odpadowej mączki szklanej (GP). Ponadto skład modyfikowano grafenem i nanokrzemionką. Badaniom poddano materiały o innowacyjnych składach oraz które mogłyby z powodzeniem zastąpić tradycyjny beton na bazie cementu portlandzkiego, którego produkcja jest obecnie uznawana za zwiększającą ślad węglowy. Wymywalność przeprowadzono metodą ”tank test”. Kompozyty geopolimerowe wykazały uwalnianie Ba, Cr, Mo i Sb spośród dziesięciu metali analizowanych w pracy. Ustalono, że proces wymywania był kontrolowany przede wszystkim przez rozpuszczanie i dyfuzję, jednak w przypadku Ba i Mo zaobserwowano również proces wyczerpywania się jonów dostępnych do wymywania. Analiza ryzyka ekologicznego nie wykazała zagrożenia dla środowiska ze strony badanych kompozytów geopolimerowych.
Czasopismo
Rocznik
Tom
Strony
3--15
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
- Department of Process and Environmental Engineering, Opole University of Technology, Opole, Poland
autor
- Department of Process and Environmental Engineering, Opole University of Technology, Opole, Poland
autor
- Department of Building Materials Engineering, Opole University of Technology, Opole, Poland
- Department of Building Materials Engineering, Opole University of Technology, Opole, Poland
Bibliografia
- 1. Abbasi, S. M., Ahmadi, H., Khalaj, G. & Ghasemi, B. (2016). Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes, Ceramics International, 42, 14, pp. 15171-15176. DOI:10.1016/J.CERAMINT.2016.06.080
- 2. Bakhshi, N., Sarrafi, A. & Ramezanianpour, A. A. (2019). Immobilization of hexavalent chromium in cement mortar: leaching properties and microstructures, Environmental Science and Pollution Research, 26, 20, pp. 20829-20838. DOI:10.1007/S11356-019-05301-Z/FIGURES/7
- 3. Bao, S., Qin, L., Zhang, Y., Luo, Y. & Huang, X. (2021). A combined calcination method for activating mixed shale residue and red mud for preparation of geopolymer, Construction and Building Materials, 297, p. 123789. DOI:10.1016/J.CONBUILDMAT.2021.123789
- 4. Baran, A. & Wieczorek, J. (2015). Application of geochemical and ecotoxicity indices for assessment of heavy metals content in soils, Archives of Environmental Protection, 41, 2, pp. 54–63. DOI:10.1515/AEP-2015-0019
- 5. Cubukcuoglu, B. & Ouki, S. K. (2019). Comparison of mechanical and leaching behaviours of pulverised fuel ash/low-grade magnesium oxide-cement blended stabilised/solidified baghouse dust, European Journal of Environmental and Civil Engineering, 23, 6, pp. 771-788. DOI:10.1080/19648189.2017.1310140
- 6. Faragó, T., Špirová, V., Blažeková, P., Lalinská-Voleková, B., Macek, J., Jurkovič, Ľ., Vítková, M. & Hiller, E. (2023). Environmental and health impacts assessment of long-term naturally-weathered municipal solid waste incineration ashes deposited in soil-old burden in Bratislava city, Slovakia, Heliyon, 9, 3, p. e13605. DOI:10.1016/J.HELIYON.2023.E13605
- 7. Hartwich, P. & Vollpracht, A. (2017). Influence of leachate composition on the leaching behaviour of concrete, Cement and Concrete Research, 100, pp. 423-434. DOI:10.1016/J.CEMCONRES.2017.07.002
- 8. Hołtra, A. & Zamorska-Wojdyła, D. (2023). Application of individual and integrated pollution indices of trace elements to evaluate the noise barrier impact on the soil environment in Wrocław (Poland), Environmental Science and Pollution Research, 30, 10, pp. 26858-26873. DOI:10.1007/S11356-022-23563-Y/FIGURES/7
- 9. Janowska-Renkas, E., Zdrojek, M., Kozioł, M. & Kaliciak-Kownacka, A. (2023). Effect of composition of geopolymer composites containing fly ash and waste glass powder on their durability and resistivity demonstrated in presence of a nanocarbon additive in a form of graphene, Measurement, 211, p. 112616. DOI:10.1016/J.MEASUREMENT.2023.112616
- 10. Jaskuła, J., Sojka, M., Fiedler, M. & Wróżyński, R. (2021). Analysis of spatial variability of river bottom sediment pollution with heavy metals and assessment of potential ecological hazard for the Warta river, Poland, Minerals, 11, 3, pp. 1-21. DOI:10.3390/MIN11030327
- 11. Ji, Z. & Pei, Y. (2020). Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO43- and Cr2O72-) in wastes-based geopolymer, Journal of Hazardous Materials, 384, p. DOI:10.1016/J.JHAZMAT.2019.121290
- 12. Kazapoe, R. W., Amuah, E. E. Y. & Dankwa, P. (2022). Sources and pollution assessment of trace elements in soils of some selected mining areas of southwestern Ghana, Environmental Technology & Innovation, 26, p. 102329. DOI:10.1016/J.ETI.2022.102329
- 13. Kowalik, R., Gawdzik, J. & Gawdzik, B. (2019). Risk Analysis of Accumulation of Heavy Metals from Sewage Sludge in Soil from the Sewage Treatment Plant in Starachowice, Structure and Environment, 11, 4, pp. 287-295. DOI:10.30540/SAE-2019-022
- 14. Król, A. (2016). The role of the silica fly ash in sustainable waste management, E3S Web of Conferences, 10, 00049. DOI:10.1051/E3SCONF/20161000049
- 15. Król, A. (2020). Mechanisms Accompanying Chromium Release from Concrete, Materials, 13, 8, p. 1891. DOI: 10.3390/MA13081891
- 16. Król, A. & Mizerna, K. (2016). Directions of development of research methods in the assessment of leaching of heavy metals from mineral waste, E3S Web of Conferences, 10, p. 00050. DOI:10.1051/e3sconf/20161000050
- 17. Król, M., Rożek, P., Chlebda, D. & Mozgawa, W. (2018). Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash – ATR-FTIR studies, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 198, pp. 33-37. DOI:10.1016/J.SAA.2018.02.067
- 18. Kuterasińska-Warwas, J. & Król, A. (2017). Leaching of heavy metals from cementitious composites made of new ternary cements, E3S Web of Conferences, 19, p. 02019. DOI:10.1051/e3sconf/20171902019
- 19. Liu, D., Wang, J., Yu, H., Gao, H. & Xu, W. (2021). Evaluating ecological risks and tracking potential factors influencing heavy metals in sediments in an urban river, Environmental Sciences Europe, 33, 1, pp. 1-13. DOI:10.1186/S12302-021-00487-X/FIGURES/6
- 20. Movafagh, A., Mansouri, N., Moattar, F. & Vafaeinejad, A. R. (2020). Distribution and Ecological Risk Assessment of Heavy Metals in Roadside Soil along the Hemat Highway of Tehran, Iran, Environment Protection Engineering, 44, 3, pp. 5-17. DOI:10.37190/EPE180301
- 21. Müllauer, W., Beddoe, R. E. & Heinz, D. (2015). Leaching behaviour of major and trace elements from concrete: Effect of fly ash and GGBS, Cement and Concrete Composites, 58, pp. 129-139. DOI:10.1016/J.CEMCONCOMP.2015.02.002
- 22. Nayak, D. K., Abhilash, P. P., Singh, R., Kumar, R. & Kumar, V. (2022). Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies, Cleaner Materials, 6, p. 100143. DOI:10.1016/J.CLEMA.2022.100143
- 23. Overmann, S., Lin, X. & Vollpracht, A. (2021). Investigations on the leaching behavior of fresh concrete - A review, Construction and Building Materials, 272, p. 121390. DOI:10.1016/J.CONBUILDMAT.2020.121390
- 24. Phoo-ngernkham, T., Chindaprasirt, P., Sata, V., Hanjitsuwan, S. & Hatanaka, S. (2014). The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature, Materials and Design, 55, pp. 58-65. DOI:10.1016/j.matdes.2013.09.049
- 25. Rachwał, M., Penkała, M., Rogula-Kozłowska, W., Wawer-Liszka, M., Łukaszek-Chmielewska, A. & Rakowska, J. (2024). Influence of road surface type on the magnetic susceptibility and elemental composition of road dust, Archives of Environmental Protection, 50, 4, pp. 135-146. DOI: 10.24425/AEP.2024.152903
- 26. Rozpondek, K. & Rozpondek, R. (2019). The Use of Ecological Risk Indicators to Assess the Degree of Pollution of Bottom Sediments of the Dzierżno Duże Water Reservoir, Engineering and Protection of Environment, 22, 1, pp. 53-62. DOI:10.17512/ios.2019.1.5. (in Polish)
- 27. Shamsol, A.’lia S., Apandi, N. M., Zailani, W. W. A., Izwan, K. N. K., Zakaria, M. & Zulkarnain, N. N. (2024). Graphene oxide as carbon-based materials: A review of geopolymer with addition of graphene oxide towards sustainable construction materials, Construction and Building Materials, 411, pp. 134410. DOI:10.1016/J.CONBUILDMAT.2023.134410
- 28. Sitarz-Palczak, E., Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers, Archives of Environmental Protection, 45, 1, pp. 126-135. DOI:10.24425/AEP.2019.126427
- 29. Sobolev, K., Flores, I., Torres-Martinez, L. M., Valdez, P. L., Zarazua, E. & Cuellar, E. L. (2009). Engineering of SiO2 Nanoparticles for Optimal Performance in Nano Cement-Based Materials, Nanotechnology in Construction 3, pp. 139-148. DOI:10.1007/978-3-642-00980-8_18
- 30. Sun, Z & Vollpracht, A. (2020). Leaching of monolithic geopolymer mortars, Cement and Concrete Research, 136, p. 106161. DOI:10.1016/J.CEMCONRES.2020.106161
- 31. Takahashi, S., Daimon, M. & Sakai, E. (2003). Sorption of CrO42- for cement hydrates and the leaching from cement hydrates after sorption, Proceedings of the 11th International Congress on the Chemistry of Cement “Cement’s Contribution on the Development in the 21st Century,” pp. 2166-2172.
- 32. Tan, J., De Vlieger, J., Desomer, P., Cai, J. & Li, J. (2022). Co-disposal of construction and demolition waste (CDW) and municipal solid waste incineration fly ash (MSWI FA) through geopolymer technology, Journal of Cleaner Production, 362, p. 132502. DOI:10.1016/J.JCLEPRO.2022.132502
- 33. Tho-In, T., Sata, V., Boonserm, K. & Chindaprasirt, P. (2018). Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash, Journal of Cleaner Production, 172, pp. 2892-2898. DOI:10.1016/J.JCLEPRO.2017.11.125
- 34. Tomczyk, P., Wdowczyk, A., Wiatkowska, B. & Szymańska-Pulikowska, A. (2023). Assessment of heavy metal contamination of agricultural soils in Poland using contamination indicators, Ecological Indicators, 156, p. 111161. DOI:10.1016/J.ECOLIND.2023.111161
- 35. Toniolo, N., Rincón, A., Roether, J. A., Ercole, P., Bernardo, E. & Boccaccini, A. R. (2018). Extensive reuse of soda-lime waste glass in fly ash-based geopolymers, Construction and Building Materials, 188, pp. 1077-1084. DOI:10.1016/J.CONBUILDMAT.2018.08.096
- 36. Van Der Sloot, H. A. (2000). Comparison of the characteristic leaching behavior of cements using standard (EN 196-1) cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling, Cement and Concrete Research, 30, 7, pp. 1079-1096. DOI:10.1016/S0008-8846(00)00287-8
- 37. Vollpracht, A. & Brameshuber, W. (2016). Binding and leaching of trace elements in Portland cement pastes, Cement and Concrete Research, 79, pp. 76-92. DOI:10.1016/J.CEMCONRES.2015.08.002
- 38. Yandem, G. & Jabłońska-Czapla, M. (2024). Review of indium, gallium, and germanium as emerging contaminants: occurrence, speciation and evaluation of the potential environmental impact, Archives of Environmental Protection, 50, 3, pp. 84-99. DOI:10.24425/AEP.2024.151688
- 39. Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., Khan, K. A. & Li, S. (2022). Health and environmental effects of heavy metals, Journal of King Saud University - Science, 34, 1, p. 101653. DOI:10.1016/J.JKSUS.2021.101653
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1f0c6fec-ec9c-455a-b5f4-ec91f644076f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.