PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seismic codes based equivalent nonlinear and stochastic soil structure interaction analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to consider the effects of the variation of shear modulus ratio (G/G0) and damping ratio (ξ) of soil, obtained by a linear iterative method based on the design spectra of seismic codes, the soil environment in terms of uncertainties in shear modulus using Monte Carlo simulations and the foundation damping (ξf) of flexible base for analyses of the Soil-Structure Interaction (SSI) problems. A squat structure with circular shallow foundation resting on a soil layer over a homogeneous half-space is studied by using cone model and considering seismic zone effect on structural response. Firstly, after showing the effects of the correction of G and ξ on impedance functions and the responses of soil-foundation-structure system, a study is carried out to compare these effects to those of the modelling of uncertainties in shear modulus as random variations. Secondly, a comparative analysis on design response spectra and base shear forces was carried out for four seismic codes (Algerian Seismic Rules RPA99- 2003, Eurocode 8-2004, International Building Code IBC-2015 and Indian Code IS-1893-2002) considering the three cases of SSI: SSI effects (initial G and ξ), nonlinear SSI (corrected G and ξ) and stochastic SSI (random G with COV = 20%) compared to the fixed base case. Results show that the correction of G and ξ, according to the equivalent nonlinear method in all the cases, leads to a remarkable decrease in peak responses but show a huge amount of reduction in the second study for IBC-2015 and IS-1893-2002 codes compared to the other codes.
Wydawca
Rocznik
Strony
1--14
Opis fizyczny
Bibliogr. 65 poz., rys., tab.
Twórcy
  • Geomaterials Laboratory, Hassiba Benbouali University of Chlef, Algeria
  • Geomaterials Laboratory, Hassiba Benbouali University of Chlef, Algeria
  • Civil Engineering Department, University of Sakarya, Turkey
Bibliografia
  • [1] Çelebi, E., Goktepe, F., Karahan, N. (2012). Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction. Natural hazards and earth system science, 12: 3495–3505.
  • [2] Farghaly, A.A., Ahmed, H.H. (2013). Contribution of soil-structure interaction to seismic response of buildings. Geotechnical engineering, 17(5): 959–971.
  • [3] Park, J.H., Choo, J.F., Cho, J.R. (2013). Dynamic soil-structure interaction analysis for complex soil profiles using unaligned mesh generation and nonlinear modeling approach. Structural engineering, 17(4): 753–762.
  • [4] Jia, J. (2018). Soil dynamics and foundation modeling, offshore and earthquake engineering Springer nature, Bergen, Norway.
  • [5] EC8-2004 (English): Eurocode 8: Design of Structures for Earthquake Resistance. Part 5 : Foundation, retaining structures and geotechnical aspects.
  • [6] FEMA 440 (2005), Recommended Improvements of Nonlinear Static Seismic Analysis Procedures, Applied Technology Council: California.
  • [7] ASCE (2010): Applied Technology Council. 'Tentative Provisions for the Development of Seismic Regulations for Buildings' ATC- 3-06: California.
  • [8] Breysse, D., La Borderie, C., Elachachi, S.M., Niandou, H. (2007). Spatial variation in soil properties and their influence on structural reliability. International Journal of Civil Engineering and Environmental Systems, 2(24): 73–86.
  • [9] Cottereau, R., Clouteau, D., Soize, C. (2007). Probabilistic impedance of foundation: impact on the seismic design on uncertain soils. Earthquake engineering and structural dynamics, 1: 1–17.
  • [10] Guellil, M.E., Harichane, Z., Djilali, B., Sadouki, A. (2017). Soil and structure uncetrtainty effects on the soil foundation structure dynamic response. Earthquake and structure, 2: 153–163.
  • [11] Harichane, Z., Guellil, M.E., Gadouri, H. (2018). Benefits of probabilistic soil-foundation-structure interaction analysis. Inter Jour of Geotechnical earthquake engineering, 9(1): 43–64.
  • [12] Pitilakisa, D., Dietz, M., Wood, D.M., Clouteau, C., Modaressi, A. (2008). Numerical simulation of dynamic soil–structure interaction in shaking table testing. Soil Dynamics and Earthquake Engineering, 28: 453–467.
  • [13] Van Nguyen, Q., Ftahi, B., Hokmabadi, A.S. (2017). Influence of Size and Load-Bearing Mechanism of Piles on Seismic Performance of Buildings Considering Soil–Pile Structure Interaction. International Journal of Geomechanics (ASCE), DOI: 10.1061/(ASCE)GM.1943-5622.0000869.
  • [14] Chehata, A., Harichane, Z., Karray, M. (2017). Non-linear soil modelling by correction of the hysteretic damping using a modified Iwan model together with Masing rules. InternatIonal Journal of Geotechnical Engineering, 1–13.
  • [15] Brennan, A.J. Thusyanthan, N.I. Madabhushi, S.P.J. (2005). Evaluation of shear modulus and damping in dynamic centrifuge tests. Journal of geotechnical and geoenvironmental engineering. DOI: 10.1061/(ASCE)1090- 0241(2005)131:12(1488).
  • [16] Kishida, T. (2016). Comparaison and correction of modulus reduction models for clays and silts. J. geotechnical and geoenvironemental Engineering.
  • [17] RPA99, version (2003) Règlement parasismique Algérienne. Central national de recherche appliquée en génie parasismique.
  • [18] International Building Code (IBC) (2015) Chapter 16 – Section 1613 ICC Central Regional Office, Country Club Hills (IL, USA).
  • [19] IS 1893-2002 Part-1 Criteria For Earthquake Resistant Deign of Structures Part-1 General Provisions And Buildings Fifth Revision.
  • [20] Zhang, L., Ahmari, S. (2011). Nonlinear analysis of laterally loaded rigid piles in cohesive soil. Int. J. Numer. Anal. Meth. Geomech, DOI: 10.1002/nag.1094
  • [21] Ravikumar, C.R., Gunneswara, T.D.R. (2012). Study of soil interaction in a model building frame with plinth beam supported by pile group. International Journal of Advanced Structural Engineering, 4(11): 1–15.
  • [22] Truty, A. (2018). On consistent nonlinear analysis of soil– structure interaction problems. Studia Geotechnica et Mechanica, 40(2): 86–95.
  • [23] Haldar, S., Basu, D. (2016). Analysis of Beams on Heterogeneous and Nonlinear Soil. International Journal of Geomechanics. International Journal of Geomechanics, DOI: 10.1061/(ASCE)GM.1943-5622.0000599.
  • [24] Tsai, C.C., Liu in, H.W. (2017). Site response analysis of vertical ground motion in consideration of soil nonlinearity. Soil Dynamics and Earthquake Engineering, 102: 124–136.
  • [25] Jastrzębska, M., Lupieżowiec, M., Uliniarz, R., Jaroń, A. (2014). Analysis of the vibration propagation in the subsoil. Studia Geotechnica et Mechanica, 26(3): 9–19. DOI: 10.2478/sgem- 2014-0023.
  • [26] Okada, T., Fujita, K., Takewaki, I. (2016). Robustness evaluation of seismic pile response considering uncertainty mechanism of soil properties. Innovative infrastructure solutions, DOI 10.1007/s41062-016-0009-8.
  • [27] Chowdhury, I., Dasgupta, S.P. (2009). Dynamics of structure and foundation – A Unified Approach, 2. Applications. Taylor & Francis Group, London, UK.
  • [28] Raychowdhury, P., Singh, P. (2012). Effect of nonlinear soil-structure interaction on seismic response of low-rise SMRF buildings. Earthquake Engineering And Engineering Vibration, 11(4) : 541–551. DOI: 10.1007/s11803-012-0140-2.
  • [29] Hu, Q., Li, H., Yang, G., Cai, Y. (2019). Effects of uncertainty of dynamic shear modulus ratio on design ground motion. Soil Mechanics and Foundation Engineering, 56(2): 82–90. DOI 10.1007/s11204-019-09574-x.
  • [30] Uzielli, M., Lacasse, S., Nadim, F., Phoon, K.K. (2016). Soil variability analysis for geotechnical practice. Conference: Proceedings of the 2nd International Workshop on Characterisation and Engineering Properties of Natural Soils, At Singapore. DOI: 10.1201/NOE0415426916.ch3.
  • [31] Manolis, G.D. (2002). Stochastic soil dynamic. International Journal of Soil Dynamics and Earthquake Engineering, 22(1): 3–15.
  • [32] Cao, Z., Wang, Y., Li, D. (2016). Efficient Monte Carlo Simulation of Parameter Sensitivity in Probabilistic Slope Stability Analysis. Probabilistic Approaches for Geotechnical Site Characterization and Slope Stability Analysis, 169–184.
  • [33] Djilali Berkane, H., Harichane, Z., Guellil, M.E., Sadouki, A. (2018). Investigation of Soil Layers Stochasticity Effects on the SpatiallyVarying Seismic Response Spectra. Indian geotechnical journal. https://doi.org/10.1007/s40098-018-0301-y.
  • [34] Górska, K., Muszyński, Z., Rybak, J. (2012). Displacement monitoring and sensitivity analysis in the observational mathod. Studia Geotechnica et Mechanica, 35(3), 14(4): 25–43. DOI: 10.2478/sgem-2013-0028.
  • [35] Baecher, G.R., Christian, J.T. (2003). Reliability and statistics in geotechnical engineering. John Wiley & Sons Ltd, England.
  • [36] Martín, J. Pérez, C.J. (2008). Application of a generalized lognormal distribution to engineering data fitting. Proceedings of the European safety and reliability conference, Esrel 2008, and 17th SRA-Europe, Valencia, Spain, September, 22–25, 2008.
  • [37] Bulleit, W. (2008). Uncertainty in Structural Engineering. Practice Periodical on Structural Design and Construction, ASCE, 13(1): 24–30. DOI: 10.1061/(ASCE)1084-0680.
  • [38] Stewart, J.P., Kim, S., Bielak, J., Dobry, R., Power, M.S. (2003). Revisions to soil-structure interaction procedures in NEHRP design provisions. Earthquake Spectra, 19(3): 677–96.
  • [39] Lutes, L.D., Sarkani, S., Jin, S. (2000). Response variability of an SSI system with uncertain structural and soil properties. Engineering Structures, 22(6): 605–620.
  • [40] Badaoui, M., Berrah, M.K., Mébarki, A. (2009). Soil height randomness influence on seismic response: Case of an Algiers site. Computers and Geotechnics, 36: 102–12.
  • [41] Moghaddasi, M., Cubrinovski, M., Chase, J.G., Pampanin, S., Carr, A. (2011). Effects of soil-foundation-structure interaction on seismic structural response via robust Monte Carlo simulation. Engineering Structure, 33: 1338–1347.
  • [42] Mirzai, F., Mahsuli, M., Ghannad, M.A. (2016). Probabilistic analysis of soil-structure interaction effects on the seismic performance of structures. Earthquake Engineering & Structural Dynamics, DOI: 10.1002/eqe.2807.
  • [43] Kumar, M., Dass, Goel, M., Matsagar, V.A., Rao, K.S. (2014). Response of semi-buried structures subjected to multiple blast loading considering soil–structure interaction. Indian geotechnical journal, DOI 10.1007/s40098-014-0143-1.
  • [44] Wolf, J. P., Deeks, A. J. (2004). Foundation Vibration Analysis : a Strength of Materials Approach. Amsterdam: Elsevier.
  • [45] Pradhan, P.K., Baidya, D.K., Ghosh, D.P. (2004). Dynamic response of foundation resting on layered soil by cone model. Soil Dyn. Earthq. Eng, 24(6): 425–34.
  • [46] Pradhan, P.K., Mandal, A., Baidya, D.K., Ghosh, D.P. (2008). Dynamic response of machine foundation on layered soil. Geotech. Geol. Eng, 26(4): 453–68.
  • [47] Azarhoosh, Z., Ghodrati Amiri, G.R. (2010). Elastic Response of Soil-Structure Systems Subjected to Near-Fault Rupture Directivity Pulses. Soil Dynamics and Earthquake Engineering - Proceedings of Sessions of Geoshanghai 2010. Geotechnical special publication; 201: American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia, 20191-4400.
  • [48] Meek JW, Wolf JP. Cone models for homogeneous soil I. Geotechnical Engng Div, ASCE 1992; 118(5): 667–85.
  • [49] Meek JW, Wolf JP. Cone models for soil layer on rigid rock II. Geotechnical Engng Div, ASCE 1992; 118(5): 686–703.
  • [50] Wolf JP, Meek JW. Cone models for a soil layer on a flexible rock half-space. Earthquake Engng Struct Dyn 1993; 22: 185–93.
  • [51] Meek JW, Wolf JP. Cone models for a embedded foundation. Geotechnical Engng Div, ASCE 1994; 120(1): 60–80.
  • [52] Wolf JP, Meek JW. Dynamic stiffness of foundation on layered soil half-space using cone frustums. Earthquake Engng Struct Dyn 1994; 23: 1079–95.
  • [53] Mohasseb, S. Ghazanfari, N. Rostami, M. Rostami, S. (2020). Effect of Soil–Pile–Structure Interaction on Seismic Design of Tall and Massive Buildings Through Case Studies. Transportation Infrastructure Geotechnology 1: 13–45. https:// doi.org/10.1007/s40515-019-00086-7
  • [54] Mittal, R.K., Rawat, A., Rawat, S. (2016). Soil Structure Interaction in Indian Seismic code: Recommendations for Inclusion of Potential Factors. International journal of earth sciences and engineering, 09(03): 124–130.
  • [55] Zafarkhah, E., Dehkordi, M.R. (2017). Evaluation and numerical simulation of soil type effects on seismic soil-structure interaction response of RC structures. Journal of Vibroengineering, 19(7): 5208–5230. https://doi.org/10.21595/ jve.2017.18286.
  • [56] Fattah, M. Y., Al-Mosawi, M. J., Al-Ameri, A. F. I., (2017), ‘Dynamic Response of Saturated Soil - Foundation System Acted upon by Vibration’, Journal of Earthquake Engineering, Vol. 21, No. 7, pp. 1158–1188, Taylor & Francis Group, LLC, DOI: 10.1080/13632469.2016.1210060.
  • [57] Li, P., Lu, X. Chen, Y. (2004). Computer simulation on dynamic soil-structure interaction system. 13th World conference on Earthquake Engineering. Vancouver, Canada.
  • [58] Fattah, M.Y. Al-Mosawi, M.J. Al-Ameri, F.I. (2016). Vibration response of saturated sand - foundation system. Int J of Earthquakes and Structures; 11(1): 83–107.
  • [59] Fattah, M.Y. Zabar, B.Z. Mustafa, F.M. (2017). Effect of saturation on response of a single pile embedded in saturated sandy soil to vertical vibration. European Journal of Environmental and Civil Engineering; 24(3): 381–400. https:// doi.org/10.1080/19648189.2017.1391126.
  • [60] Fattah, M.Y. Al-Neami, M.A. Jajjawi, N.H. (2014). Prediction of liquefaction potential and pore water pressure beneath machine foundations. Central European Journal of Engineering. DOI: 10.2478/s13531-013-0165-y.
  • [61] 2015 NEHRP Recommended Seismic Provisions (2016) 'Design Examples (FEMA P- 1051/July 2016)'.
  • [62] Mittal, R.K., Gajinkar, V. (2014). Evaluation of soil-structure interaction guidelines in indian seismic codes. International journal of civil engineering and technology, 5(5): 97–104.
  • [63] Worku, A. (2014). Soil-structure- interaction provisions: A potential tool to consider for economical seismic design of buildings. Journal of the South African institution of civil engineering, 1(56): 54–62.
  • [64] Jayalekshmi, B.R., Chinmayi, H.K. (2014). Soil–Structure Interaction effect on seismic force evaluation of rc framed buildings with various shapes of shear wall: as Per IS 1893 and IBC. Indian geotechnical journal. DOI 10.1007/s40098-014- 0134-2.
  • [65] International Building Code (2006) International Code Council Inc. Falls Church, Virginia.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9e4c7e8d-a9b1-4483-8479-8024d1e4d59d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.