PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anaerobic Co-Digestion of Domestic Sewage Sludge with Food Waste: Incorporating Food Waste as a Co-Substrate Under Semi-Continuous Operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anaerobic co-digestion of domestic sewage sludge with food waste as a substrate for biogas production and as a mean for waste management was conducted. The food waste was incorporated into the bioreactor as a cosubstrate semi-continuously via replacement mode and addition mode of operations in ratios up to 50%. The methane gas yield under the replacement mode of operation ranged from 295 to 1358 ml/gVSadded and from 192 to 462 ml/gVSadded for the replacement mode of operation and the addition mode of operation, respectively. The results indicate that the methane gas yield increases along with the percentage share of food waste in the feed. Anaerobic co-digestion under semi-continuous operation enabled handling large organic loadings compared to batch co-digestion processes.
Słowa kluczowe
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Chemical Engineering Department, Mutah University, Al-Karak, Jordan
  • Civil and Environmental Engineering Department, Mutah University, Al-Karak, Jordan
  • Chemistry Department, Mutah University, Al-Karak, Jordan
  • Decentralized Integrated Sludge Management Project, implemented by Deutsche Gesellschaft fuer Internationale Zusammenarbeit GmbH, on behalf of Federal Ministry for Economic Cooperation and Development
  • Prince Faisal Center, Mutah University, Al-Karak, Jordan
  • Decentralized Integrated Sludge Management Project, implemented by Deutsche Gesellschaft fuer Internationale Zusammenarbeit GmbH, on behalf of Federal Ministry for Economic Cooperation and Development
  • Decentralized Integrated Sludge Management Project, implemented by Deutsche Gesellschaft fuer Internationale Zusammenarbeit GmbH, on behalf of Federal Ministry for Economic Cooperation and Development
Bibliografia
  • 1. Alatriste-Mondragón, F., Samar, P., Cox, H.H., Ahring, B.K., Iranpour, R. 2006. Anaerobic codigestion of municipal, farm, and industrial organic wastes: a survey of recent literature. Water Environment Research, 78, 607–36.
  • 2. Aljbour, S.H., El-Hasan, T., Al-Hamiedeh, H., Hayek, B., Abu-Samhadaneh, K. 2021. Anaerobic co-digestion of domestic sewage sludge and food waste for biogas production: A decentralized integrated management of sludge in Jordan. Journal of Chemical Technology and Metallurgy.
  • 3. Carucci, G., Carrasco, F., Trifoni, K., Majone, M., Beccari, M. 2005. Anaerobic digestion of food industry wastes: effect of codigestion on methane yield. Journal of Environmental Engineering, 131, 1037–45.
  • 4. Cockrell, P. 2008. Greasing digester-gas production. Water environment technology, 20, 70–73.
  • 5. Dai, X., Li, X., Zhang, D., Chen, Y., Dai, L. 2016. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio. Bioresource technology, 216, 323–30.
  • 6. El-Hasan, T., Hamaidah, H., Aljbour, S., Bani Hani, N., Ismail, F., Shakhatreh, Y., Al Majali, D. (2019) ‘The results of implementation of treated wastewater and Bio-soilds generated from WWTP on the plantation of fodder at marginal areas at Al-Karak, south Jordan. In: Al., A.E. (Ed.) Water Perspectives in emerging countries: water in agricultural practices. Cuviller Verlag, Gottingen.
  • 7. Fitamo, T., Boldrin, A., Boe, K., Angelidaki, I., Scheutz, C. 2016. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors. Bioresource technology, 206, 245–54.
  • 8. Gelegenis, J., Georgakakis, D., Angelidaki, I., Mavris, V. 2007. Optimization of biogas production by co-digesting whey with diluted poultry manure. Renewable energy, 32, 2147–60.
  • 9. Gomez, X., Cuetos, M.J., Cara, J., Moran, A., Garcia, A.I. 2006. Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: Conditions for mixing and evaluation of the organic loading rate. Renewable energy, 31, 2017–24.
  • 10. Gunaseelan, V.N. 2004. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass and bioenergy, 26, 389–99.
  • 11. Hallaji, S.M., Kuroshkarim, M., Moussavi, S.P. 2019. Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey. BMC biotechnology, 19, 19.
  • 12. Han, S.-K., Shin, H.-S. 2004. Biohydrogen production by anaerobic fermentation of food waste. International journal of hydrogen energy, 29, 569–77.
  • 13. Jiries, A., Al-Nasir, F., El-Hasan, T. 2017. Pasture land in a desert area at Al-Karak province/Jordan. Solutions to Water Challenges in MENA Region: Proceedings of the Regional Workshop, April 25–30, 2017 Cairo, Egypt. Cuvillier Verlag.
  • 14. Jones, V., Gardner, M., Ellor, B. 2014. Concentrations of trace substances in sewage sludge from 28 wastewater treatment works in the UK. Chemosphere, 111, 478–84.
  • 15. Kabouris, J.C., Tezel, U., Pavlostathis, S.G., Engelmann, M., Todd, A.C., Gillette, R.A. 2008. The anaerobic biodegradability of municipal sludge and fat, oil, and grease at mesophilic conditions. Water Environment Research, 80, 212–21.
  • 16. Koupaie, E.H., Leiva, M.B., Eskicioglu, C., Dutil, C. 2014. Mesophilic batch anaerobic co-digestion of fruit-juice industrial waste and municipal waste sludge: Process and cost-benefit analysis. Bioresource Technology, 152, 66–73.
  • 17. Labatut, R.A., Angenent, L.T., Scott, N.R. 2011. Biochemical methane potential and biodegradability of complex organic substrates. Bioresource technology, 102, 2255–64.
  • 18. Li, C., Champagne, P. and Anderson, B.C. 2011. Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions. Bioresource technology, 102(20), pp.9471–9480.
  • 19. Li, Y.Y., Sasaki, H., Yamashita, K., Seki, K., Kamigochi, I. 2002. High-rate methane fermentation of lipid-rich food wastes by a high-solids co-digestion process. Water Science and Technology, 45, 143–50.
  • 20. Lillenberg, M., Yurchenko, S., Kipper, K., Herodes, K., Pihl, V., Lõhmus, R., Ivask, M., Kuu, A., Kutti, S., Litvin, S.V. 2010. Presence of fluoroquinolones and sulfonamides in urban sewage sludge and their degradation as a result of composting. International Journal of Environmental Science Technology, 7, 307–12.
  • 21. Maragkaki, A., Vasileiadis, I., Fountoulakis, M., Kyriakou, A., Lasaridi, K., Manios, T. 2018. Improving biogas production from anaerobic co-digestion of sewage sludge with a thermal dried mixture of food waste, cheese whey and olive mill wastewater. Waste management, 71, 644–51.
  • 22. Mohapatra, D.P., Brar, S.K., Tyagi, R.D., Picard, P., Surampalli, R.Y. 2012. Carbamazepine in municipal wastewater and wastewater sludge: ultrafast quantification by laser diode thermal desorption-atmospheric pressure chemical ionization coupled with tandem mass spectrometry. Talanta, 99, 247–55.
  • 23. Prabhu, M.S., Mutnuri, S. 2016. Anaerobic codigestion of sewage sludge and food waste. Waste management research, 34, 307–15.
  • 24. Shin, H.-S., Youn, J.-H., Kim, S.-H. 2004. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. International Journal of Hydrogen Energy, 29, 1355–63.
  • 25. Xie, S., Wickham, R., Nghiem, L.D. 2017. Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes. International Biodeterioration Biodegradation, 116, 191–97.
  • 26. Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P. 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresource technology, 98, 929–35.
  • 27. Zitomer, D.H., Adhikari, P., Heisel, C., Dineen, D. 2008. Municipal anaerobic digesters for codigestion, energy recovery, and greenhouse gas reductions. Water Environment Research, 80, 229–37.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-431b0927-679f-4210-a7a9-99988196223f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.