PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PCcS-RAU-Net: Automated parcellated Corpus callosum segmentation from brain MRI images using modified residual attention U-Net

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: The Corpus callosum (Cc) in the cerebral cortex is a bundle of neural fibers that facilitates inter-hemispheric communication. The Cc area and area of its sub-regions (also known as parcels) have been examined as a biomarker for cortical pathology and differential diagnosis in neurodegenerative diseases such as Autism, Alzheimer’s disease (AD), and more. Manual segmentation and parcellation of Cc are laborious and time-consuming. The present work proposes a novel work of automated parcellated Cc (PCc) segmentation that will serve as a potential biomarker to study and diagnose neurological disorders in brain MRI images. Method: In this perspective, the present work aims to develop an automated PCc segmentation from mid-sagittal T1- weighted (w) 2D brain MRI images using a deep learning-based fully convolutional network, a modified residual attention U-Net, referred to as PCcS-RAU-Net. The model has been modified to use a multi-class segmentation configuration with five target classes (parcels): rostrum, genu, mid-body, isthmus and splenium. Results: The experimental research uses two benchmark MRI datasets, ABIDE and OASIS. The proposed PCcS-RAU-Net outperformed existing methods on the ABIDE dataset with a DSC of 97.10% and MIoU of 94.43%. Furthermore, the model’s performance is validated on the OASIS and Real clinical image (RCI) data and hence verifies the model’s generalization capability. Conclusion: The proposed PCcS-RAU-Net model extracts essential characteristics such as the total area of the Cc (TCcA) to categorize MRI slices into healthy controls (HC) and disease groups. Also, sub-regional areas, Cc1A to Cc5A, help study atrophy progression for early diagnosis.
Twórcy
  • Department of Electronics and Communication Engineering, NIT Raipur, Chhattisgarh, India
autor
  • Department of Electronics & Communication Engineering, NIT Raipur, C.G, India
  • Department of Electronics & Communication Engineering, NIT Raipur, C.G, India
  • Department of Radiodiagnosis, AIIMS Raipur, C.G, India
Bibliografia
  • [1] Caldeira T, Julio PR, Appenzeller S, Rittner L. inCCsight: A software for exploration and visualization of DT-MRI data of the Corpus Callosum. Comput Graph 2021;99:259-71. https:// doi.org/10.1016/j.cag.2021.07.012.
  • [2] Park G, Kwak K, Seo SW, Lee JM. Automatic segmentation of corpus callosum in midsagittal based on Bayesian inference consisting of sparse representation error and multi-atlas voting. Front Neurosci 2018;12. https://doi.org/10.3389/ fnins.2018.00629.
  • [3] Russo AW, Stockel KE, Tobyne SM, Ngamsombat C, Brewer K, Nummenmaa A, et al. Associations between corpus callosum damage, clinical disability, and surface-based homologous inter-hemispheric connectivity in multiple sclerosis. Brain Struct Funct 2022;227:2909-22. https://doi.org/10.1007/s00429-022-02498-7.
  • [4] Chandra A, Verma S, Raghuvanshi AS, Londhe ND, Bodhey NK, Subham K. Corpus Callosum Segmentation from Brain MRI and its Possible Application in Detection of Diseases. In: Proc 2019 3rd IEEE Int Conf Electr Comput Commun Technol ICECCT. https://doi.org/10.1109/ICECCT.2019.8869395.
  • [5] Cover GS, Appenzeller S, Rittner L, de Carvalho Pereira ME. Corpus callosum parcellation methods: a quantitative comparative study. Med Imaging 2018 Biomed Appl Mol Struct Funct Imaging 2018;10578:42. https://doi.org/10.1117/12.2296617.
  • [6] Kamal S, Park I, Kim YJ, Kim YJ, Lee U. Alteration of the corpus callosum in patients with Alzheimer’s disease: Deep learning-based assessment. PLoS One 2021;16. https://doi. org/10.1371/journal.pone.0259051.
  • [7] Kucharsky Hiess R, Alter R, Sojoudi S, Ardekani BA, Kuzniecky R, Pardoe HR. Corpus Callosum Area and Brain Volume in Autism Spectrum Disorder: Quantitative Analysis of Structural MRI from the ABIDE Database. J Autism Dev Disord 2015;45:3107-14. https://doi.org/10.1007/s10803-015- 2468-8.
  • [8] Unterberger I, Bauer R, Walser G, Bauer G. Corpus callosum and epilepsies. Seizure Eur J Epilepsy 2016;37:55-60. https:// doi.org/10.1016/j.seizure.2016.02.012.
  • [9] Bârlescu LA, Müller H, Uttner I, Ludolph AC. Segmental Alterations of the Corpus Callosum in Progressive Supranuclear Palsy: A Multiparametric Magnetic Resonance Imaging Study. Front Aging Neurosci 2021;13:720634. https:// doi.org/10.3389/fnagi.2021.720634.
  • [10] Van Schependom J, Niemantsverdriet E, Smeets D, Engelborghs S. Callosal circularity as an early marker for Alzheimer’s disease. NeuroImage Clin 2018;19:516-26. https://doi.org/10.1016/j.nicl.2018.05.018.
  • [11] Ardekani BA, Bachman AH, Figarsky K, Sidtis JJ. Corpus callosum shape changes in early Alzheimer’s disease: An MRI study using the OASIS brain database. Brain Struct Funct 2014;219:343-52. https://doi.org/10.1007/s00429-013-0503-0.
  • [12] Giuliano A, Saviozzi I, Brambilla P, Muratori F, Retico A, et al. The effect of age, sex and clinical features on the volume of Corpus Callosum in pre-schoolers with Autism Spectrum Disorder: a case-control study. Eur J Neurosci 2018;47 (6):568-78. https://doi.org/10.1111/ejn.13527.
  • [13] Bledsoe IO, Stebbins GT, Merkitch D, Goldman JG. White matter abnormalities in the corpus callosum with cognitive impairment in Parkinson disease. Neurology 2018;91(24): e2244-55. https://doi.org/10.1212/WNL.0000000000006646.
  • [14] Platten M, Treaba CA, Ouellette R, Mainero C, Herranz E, Barletta V, et al. Cortical and white matter lesion topology influences focal corpus callosum atrophy in multiple sclerosis. J Neuroimaging 2022;32(3):471-9. https://doi.org/ 10.1111/jon.12977.
  • [15] Tsuzuki D, Taga G, Watanabe H, Homae F. Individual variability in the nonlinear development of the corpus callosum during infancy and toddlerhood: a longitudinal MRI analysis. Brain Struct Funct 2022;227(6):1995-2013. https:// doi.org/10.1007/s00429-022-02485-y.
  • [16] Park KM, Kim KT, Lee DA, Cho YW. Structural brain connectivity in patients with restless legs syndrome : a diffusion tensor imaging study. Sleep 2022;45(7). https://doi. org/10.1093/sleep/zsac099.
  • [17] Palacios EM, Yuh EL, Mac DCL, Bourla I, Wren-jarvis J, Robertson CS, et al. Diffusion Tensor Imaging Reveals Elevated Diffusivity of White Matter Microstructure that Is Independently Associated with Long-Term Outcome after Mild Traumatic Brain Injury: A TRACK-TBI Study. J Neurotrauma 2022;39(19-20):1318-28. https://doi.org/10.1089/ neu.2021.0408.
  • [18] Zhao Y, Yang L, Gong G, Cao Q, Liu J. Identify aberrant white matter microstructure in ASD, ADHD and other neurodevelopmental disorders: A meta-analysis of diffusion tensor imaging studies. Prog Neuropsychopharmacol Biol Psychiatry 2022;113:110477. https://doi.org/10.1016/j.pnpbp.2021.110477.
  • [19] Devi CN, Chandrasekharan A, Sundararaman S, Alex ZC. Automatic segmentation of infant brain MR images: With special reference to myelinated white matter. Biocybern Biomed Eng 2017;37(1):143-58. https://doi.org/10.1016/j.bbe.2016.11.004.
  • [20] Cover GS, Herrera WG, Bento MP, Appenzeller S, Rittner L. Computational methods for corpus callosum segmentation on MRI: A systematic literature review. Comput Methods Programs Biomed 2018;154:25-35. https://doi.org/10.1016/j. Cmpb.2017.10.025.
  • [21] Yu Z, He Q, Yang J, Luo M. A Supervised ML Applied Classification Model for Brain Tumors MRI. Front Pharmacol 2022;13:884495. https://doi.org/10.3389/fphar.2022.884495.
  • [22] Nayak DR, Dash R, Majhi B, Zhang Y. A hybrid regularized extreme learning machine for automated detection of pathological brain. Biocybern Biomed Eng 2019;39(3):880-92. https://doi.org/10.1016/j.bbe.2019.08.005.
  • [23] Subudhi A, Dash M, Sabut S. Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybern Biomed Eng 2020;40(1):277-89. https://doi.org/10.1016/j.bbe.2019.04.004.
  • [24] Raju AR, Suresh P, Rao RR. Bayesian HCS-based multi-SVNN: A classification approach for brain tumor segmentation and classification using Bayesian fuzzy clustering. Biocybern Biomed Eng 2018;38(3):646-60. https://doi.org/10.1016/j. Bbe.2018.05.001.
  • [25] Dogan S, Datta P, Baygin M, Chakraborty S. Novel multiple pooling and local phase quantization stable feature extraction techniques for automated classification of brain infarcts. Biocybern Biomed Eng 2022;42(3):815-28. https://doi. org/10.1016/j.bbe.2022.06.004.
  • [26] Chandra A, Verma S, Raghuvanshi AS, Bodhey NK. CCsNeT: Automated Corpus Callosum segmentation using fully convolutional network based on U-Net. Biocybern Biomed Eng 2022;42(1):187-203. https://doi.org/10.1016/j.bbe.2021.12.008.
  • [27] Bento M, Fantini I, Park J, Rittner L, Frayne R. Deep Learning in Large and Multi-Site Structural Brain MR Imaging Datasets. Front Neuroinf 2022;15:82. https://doi.org/10.3389/ fninf.2021.805669.
  • [28] Brusini I, Platten M, Ouellette R, Piehl F, Wang C, Granberg T. Automatic deep learning multicontrast corpus callosum segmentation in multiple sclerosis. J Neuroimaging 2022;32 (3):459-70. https://doi.org/10.1111/jon.12972.
  • [29] Nodirov J, Abdusalomov AB, Whangbo TK. Attention 3D UNet with Multiple Skip Connections for Segmentation of Brain Tumor Images. Sensors 2022;22(17):6501. https://doi. org/10.3390/s22176501.
  • [30] Shrivastava S, Singh N, Mishra U, Chandra A, Verma S. Comparative Study of Deep Learning Models for Segmentation of Corpus Callosum. Proc 4th Int Conf Comput Methodol Commun ICCMC 2020:418-23. https://doi.org/ 10.1109/ICCMC48092.2020.ICCMC-00079.
  • [31] Azad R, Khosravi N, Merhof D. SMU-Net: Style matching UNet for brain tumor segmentation with missing modalities. International Conference on Medical Imaging with Deep Learning 2022;172:48-62. https://doi.org/10.48550/ arXiv.2204.02961.
  • [32] Lee M, Kim J, Kim REY, Kim HG, Oh SW, Lee MK, et al. Split-Attention U-Net : A Fully Convolutional Network for Robust Multi-Label Segmentation from Brain MRI. Brain Sci 2020;10:974. https://doi.org/10.3390/brainsci10120974.
  • [33] Zeng C, Gu L, Liu Z, Zhao S. Review of Deep Learning Approaches for the Segmentation of Multiple Sclerosis Lesions on Brain MRI. Front Neuroinform 2020;14:610967. https://doi.org/10.3389/fninf.2020.610967.
  • [34] Anaraki AK, Ayati M, Kazemi F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern Biomed Eng 2019;39(1):63-74. https://doi.org/ 10.1016/j.bbe.2018.10.004.
  • [35] Zhang J, Jiang Z, Dong J, Hou Y, Liu B. Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation. IEEE Access 2020;8:58533-45. https://doi.org/10.1109/ ACCESS.2020.2983075.
  • [36] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference 2015;9351:234-41. https://doi.org/10.1007/978-3-319-24574-4_28.
  • [37] Chen X, Yao L, Zhang Y. Residual Attention U-Net for Automated Multi-Class Segmentation of COVID-19 Chest CT Images. arXiv preprint arXiv:2004.05645.2020. https://doi.org/ 10.48550/arXiv.2004.05645.
  • [38] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE Conf Comput Vis Pattern Recognit 2016:770-8. https://doi.org/10.1109/CVPR.2016.90.
  • [39] Ibtehaz N, Rahman MS. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw 2020;121:74-87. https://doi.org/10.1016/j. Neunet.2019.08.025.
  • [40] Oktay O, Schlemper J, Folgoc L Le, Lee M, Heinrich M, Misawa K, et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv preprint arXiv:1804.03999.2018. https://doi. org/10.48550/arXiv.1804.03999.
  • [41] Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, et al. Attention gated networks: Learning to leverage salient regions in medical images. Med Image Anal 2019;53:197-207. https://doi.org/10.1016/j.media.2019.01.012.
  • [42] Jlassi A, ElBedoui K, Barhoumi W, Maktouf C. Unsupervised Method Based on Superpixel Segmentation for Corpus Callosum Parcellation in MRI Scans. In The Impact of Digital Technologies on Public Health in Developed and Developing Countries: 18th International Conference, ICOST 2020;12157;114-125. https://doi.org/10.1007/978-3-030-51517-1_10.
  • [43] Cui M, Chen H, Sun G, Liu J, Zhang M, Lin H, et al. Combined use of multimodal techniques for the resection of glioblastoma involving corpus callosum. Acta Neurochir 2022;164:689-702. https://doi.org/10.1007/s00701-021-05008-6.
  • [44] Herrera WJ, Appenzeller S, Reis F, Pereira DR, Bento MP, et al. Automated quality check of corpus callosum segmentation using deep learning. Med Imaging 2022 Image Process 2022;12032:725-31. https://doi.org/10.1117/12.2612835.
  • [45] Chen L, Qiao H, Zhu F. Alzheimer’s Disease Diagnosis With Brain Structural MRI Using Multiview-Slice Attention and 3D Convolution Neural Network. Front Aging Neurosci 2022:14. https://doi.org/10.3389/fnagi.2022.871706.
  • [46] Singh M, Venkatesh V, Verma A, Sharma N. Segmentation of MRI data using multi-objective antlion based improved fuzzy c-means. Biocybern Biomed Eng 2020;40(3):1250-66. https:// doi.org/10.1016/j.bbe.2020.07.001.
  • [47] Shinde S, Prasad S, Saboo Y, Kaushick R, Saini J, et al. Predictive markers for Parkinson’s disease using deep neural nets on neuromelanin sensitive MRI. NeuroImage Clin 2019;22:101748. https://doi.org/10.1016/j.nicl.2019.101748.
  • [48] Shanker R, Bhattacharya M. An automated computer-aided diagnosis system for classification of MR images using texture features and gbest-guided gravitational search algorithm. Biocybern Biomed Eng 2020;40(2):815-35. https:// doi.org/10.1016/j.bbe.2020.03.003.
  • [49] Hung Y, Vandewouw M, Emami Z, Bells S, Rudberg N, et al. Memory retrieval brain - behavior disconnection in mild traumatic brain injury : A magnetoencephalography and diffusion tensor imaging study. Hum Brain Mapp 2022;43 (17):5296-309. https://doi.org/10.1002/hbm.26003.
  • [50] Rittner L, Freitas PF, Appenzeller S, Lotufo R de A. Automatic DTI-based parcellation of the corpus callosum through the watershed transform. Rev Bras Eng Biomed 2014;30:132-43. https://doi.org/10.1590/rbeb.2014.012.
  • [51] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Adv Neural Inf Process Syst 2017;30:5999-6009. https://doi.org/10.48550/ arXiv.1706.03762.
  • [52] Sharif H, Khan RA. A novel framework for automatic detection of Autism: A study on Corpus Callosum and Intracranial Brain Volume. arXiv preprint arXiv:1903.11323.2019.
  • [53] Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL. Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 2007;19(9):1498-507. https://doi.org/10.1162/ jocn.2007.19.9.1498.
  • [54] Zhao X, Ke C, Ang E, Acharya UR, Hao K. Application of Artificial Intelligence techniques for the detection of Alzheimer ’ s disease using structural MRI images. Biocybern Biomed Eng 2021;41(2):456-73. https://doi.org/10.1016/j.bbe.2021.02.006.
  • [55] Salman S, Liu X. Overfitting Mechanism and Avoidance in Deep Neural Networks. arXiv preprint arXiv:1901.06566 2019. https://doi.org/10.48550/arXiv.1901.06566.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c90f6c5e-9f8f-4c73-83a1-6ad4fea1182d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.