PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Connectors as a key to efficient storm water management system: an in-situ assessment of residential estates in Poland

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adaptation to climate change often aims to increase the ability of cities to retain water. In recent years, there has been a shift in the approach to managing storm water from traditional methods to nature-based methods, which view storm water as a valuable resource. This study conducted a systematic analysis of eleven contemporary housing estates that are commonly considered sustainable. The study aimed to identify the elements of rainwater management and determine whether these elements form a system. The research found that, in most cases, not all elements of a rainwater management system (RMS) were present. The housing estates in Gdańsk and Gdynia demonstrated some features of an RMS but were still incomplete due to missing elements such as channels and gaps in curbs that guide rainwater. The results suggest that the implementation of some elements of an RMS does not necessarily create a fully functional system. A fully effective RMS requires the integration of all necessary elements to allow water to flow between them.
Rocznik
Strony
1--14
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • The Silesian University of Technology, Faculty of Architecture, Akademicka, Gliwice, Poland
Bibliografia
  • [1] Feng, B., Zhang, Y., Bourke, R. (2021). Urbanization impacts on flood risks based on urban growth data and coupled flood models. Natural Hazards 106, 613–627.
  • [2] Csicsaiova, R., Marko, I., Stanko, S., Skultetyova, I., Hrudka, J. (2020). Impact of stormwater runoff in the urbanized area. IOP Conference Series: Earth and Environmental Science. 444. 012008.
  • [3] Khadka, A., Kokkonen, T., Niemi, T.J., Lähde, E., Sillanpää, N., Koivusalo, H. (2020). Towards natural water cycle in urban areas: Modelling stormwater management designs. Urban Water Journal 17(7), 587–97.
  • [4] Cassin, J. (2021). History and Development of Nature-Based Solutions: Concepts and Practice. Elsevier, 19–34.
  • [5] Osaka, S., Bellamy, R., & Castree, N. (2021). Framing “nature-based” solutions to climate change. Wiley Interdisciplinary Reviews: Climate Change, 12(5), e729.
  • [6] United Nations Environment Programme (2020). The Economics of Nature-based Solutions: Current Status and Future Priorities. United Nations Environment Programme Nairobi
  • [7] WWAP (United Nations World Water Assessment Programme)/UN-Water (2018). The United Nations World Water Development Report 2018: Nature-Based Solutions for Water. Paris, UNESCO.
  • [8] https://ec.europa.eu/info/research-and-innovation/research-area/environment/nature-based-solutions_en, [access: 8 November 2021]
  • [9] Cherqui, F., Szota, C., Poelsma, P.J., James, R., Burns, M.J., Fletcher, T. (2019). How to manage nature-based solution assets such as stormwater control measures? 8th Leading-edge Conference Strategic Asset Management.
  • [10] Albert, C., Spangenberg, J., Schröter, B., (2017). Nature-based solutions: criteria. Nature 543, 315.
  • [11] Almenar, J. B., Elliot, T., Rugani, B., Philippe, B., Gutierrez, T. N., Sonnemann, G., Geneletti, D. (2021). Nexus between nature-based solutions, ecosystem services and urban challenges. Land use policy, 100, 104898.
  • [12] Gajewska, M., Matej-Łukowicz, K., Wojciechowska, E., (2016). Wybrane aspekty zrównoważonego gospodarowania wodami opadowymi na terenie zurbanizowanym (Selected aspects of sustainable rainwater management in an urbanized area). Gdańsk, 29–31.
  • [13] Castellar, J., Popartan, L., Pueyo-Ros, J., Atanasova, N., Langergraber, G., Saumel, I., Corominas, L., Comas, J., Acuña, V. (2021). Nature-based solutions in the urban context: terminology, classification and scoring for urban challenges and ecosystem services. Science of The Total Environment 779 (146237).
  • [14] Kabisch, N., N. Frantzeskaki, S. Pauleit, S. Naumann, M. Davis, M. Artmann, D. Haase, S. Knapp, H. Korn, J. Stadler, K. Zaunberger, A. Bonn. (2016). Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society 21(2), 39.
  • [15] Podręcznik adaptacji dla miast. Wytyczne do przygotowania Miejskiego Planu Adaptacji do zmian klimatu. (Adaptation Manual for Cities. Guidelines for preparing a Municipal Climate Change Adaptation Plan.) http://44mpa.pl/wp-content/uploads/2017/02/Podrecznik-adaptacji-dlamiast.pdf [access: 29.12.2022]
  • [16] Pancewicz A. (2021). Woda w mieście – działania z zakresu błękitnej infrastruktury dla łagodzenia zmian klimatu i zapobiegania ich skutkom w miastach rdzenia Górnośląsko-Zagłębiowskiej Metropolii, (Water in the city – actions in the field of blue infrastructure for adaptation of climate change and mitigation of its effects in the cities of the metropolis GZM core), Builder 4 (285).
  • [17] Lejcus, K., Burszta-Adamiak, E., Dabrowska, J., Wroblewska, K., Orzeszyna, H., Spitalniak, M., Misiewicz, J. (2017). Katalog dobrych praktyk – zasady zrownowazonego gospodarowania wodami opadowymi pochodzacymi z nawierzchni pasow drogowych (Catalog of good practices - principles of sustainable rainwater management from the surface of road lanes). Wrocław.
  • [18] Iwaszuk, E., Rudik, G., Duin, L., Mederake, L., McKenna, D., Naumann, S., Wagner, I., (2019). Błękitno-zielona infrastruktura dla łagodzenia zmian klimatu w miastach katalog techniczny (Blue-green infrastructure for climate change mitigation in cities technical catalog). Ecologic Institute, Fundacja Sendzimira.
  • [19] Fundacja Sendzimira (2019). Wawer łapie wodę Broszura informacyjna dotycząca gospodarowania wodą deszczową (Wawer is catching water Information brochure on rainwater management). Warszawa.
  • [20] Wydział Kształtowania Środowiska, Oddział ds. Projektów Środowiskowych w Departamencie Ekologii Klimatu (2020). Łódź łapie deszczówkę przewodnik dla mieszkańców (Łódź city catches the rainwater guide for the residents). Łódź.
  • [21] Szpakowski, W., Rayss, J., Lademann, D. (2018). Gdańsk - Ogród deszczowy w 5 krokach (Rain garden in 5 steps). Gdańskie Wody.
  • [22] Adamowski, D., Zalewski, J., Paluch, P., Glixelli, T., (2017). Bydgoszcz - Katalog zielono-błękitnej infrastruktury. Część II. Wytyczne i rozwiązania (Green and blue infrastructure directory. Part II. Guidelines and solutions). MWiK in Bydgoszcz and Arup.
  • [23] Bernello, G., Mondino, E., Bortolini, L. (2022). People’s Perception of Nature-Based Solutions for Flood Mitigation: The Case of Veneto Region (Italy). Sustainability 14(8), 4621.
  • [24] Fletcher, T.D., Shuster, W., Hunt, W.F., Ashley, R., Butler, D., Arthur, S. (2015). SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal 12(7), 525–42.
  • [25] Słyś D. (2013). Zrównoważone systemy odwodnienia miast. (Sustainable urban drainage systems). Dolnośląskie Wydawnictwo Edukacyjne.
  • [26] Wojciechowska E., Gajewska M., Obarska-Pempkowiak H., Żurkowska N., Surówka M., (2015). Zrównoważone systemy gospodarowania wodą deszczową (Sustainable stormwater management systems). Wydawnictwo Politechniki Gdańskiej.
  • [27] Wagner, I., Krauze, K. (2015). How to safely retain stormwater in the city: technical tools. Sustainable Development Applications 5.
  • [28] Mazur K. (2022). Zarządzanie wodami deszczowymi w Kopenhadze. (Stormwater management in Kopenhagen). Builder 9 (302).
  • [29] Szczepanowska, H.B., Sitarski, M. (2015). Drzewa zielony kapitał miasta. Jak zwiekszyc efektywnosc pracy drzew? (Green capital city trees. How to increase the efficiency of trees’ work?). Instytut Gospodarki Przestrzennej i Mieszkalnictwa, 40–75.
  • [30] Ferrini, F., Fini, A., Mori, J. & Gori, A. (2020) Role of vegetation as a mitigating factor in the urban context. Sustainability 12(10).
  • [31] Soni L., Szota C., Fletcher TD., Farrell C. (2022). Influence of water storage and plant crop factor on green roof retention and plant drought stress. PLOS Water 1(3): e0000009.
  • [32] Wang J., Garg A., Huang S., Mei G., Liu J., Zhang K., et al. (2021). The rainwater retention mechanisms in extensive green roofs with ten different structural configurations. Water Sci Technol. 84(8):1839–57.
  • [33] Estrella M., (2016) Variation in Green Roof Storage Capacity, Associated Drivers, and Implications for Stormwater Management in Portland, Oregon. University Honors Theses. Paper 351.
  • [34] Kolasa-Więcek A., Suszanowicz D. (2021) The green roofs for reduction in the load on rainwater drainage in highly urbanised areas. Environmental Science and Pollution Research, 28(26), 34269–34277.
  • [35] Bortolini, L.; Bettella, F.; Zanin, G. (2021). Hydrological Behaviour of Extensive Green Roofs with Native Plants in the Humid Subtropical Climate Context. Water 13, 44.
  • [36] Prenner F, Müller H, Stern P, Holzer M, Rauch HP, Kretschmer F.(2022). Suitability pre-assessment for decoupling in-sewer captured streams to support urban blue-green climate adaptation measures. Journal of Water Climate Change 13(4): 1748–64.
  • [37] Podhajska, E.; Burszta-Adamiak, E.; Drzeniecka-Osiadacz, A.; Zienowicz, M.; Podhajski, B.; Sawiński, T.; Jasińska, A. (2021). Sustainability as a Function of an Area: Application of Multi-Criteria Evaluation in Assessing the Effectiveness of Nature-Based Solutions. Atmosphere 12(1464).
  • [38] Teichmann M, Kuta D, Szeligova N. (2020) Urban Rainwater Management Tools. IOP Conference Series: Earth and Environmental Science 444(1).
  • [39] Frazer, L. (2005) Paving paradise: the peril of impervious surfaces. Environmental health perspectives, 113(7), A456–A462.
  • [40] Helmreich, B. (2021). Rainwater Management in Urban Areas. Water 13 (1096).
  • [41] Marko I, Csicsaiová R, Rozsa G, Stanko. (2020) Surface runoff as a potential source of pollution. IOP Conference Series: Materials Science and Engineering 867(1).
  • [42] Gama Marques P., (2022). Wpływ działan słuzacych gospodarowaniu woda deszczowa na pojemnosc retencyjna terenow mieszkaniowych (Impact of rainwater management measures on the retention capacity of residential areas), Builder 6 (299).
  • [43] Nguyen, P. Y., Astell-Burt, T., Rahimi-Ardabili, H., & Feng, X. (2021). Green Space Quality and Health: A Systematic Review. International journal of environmental research and public health, 18(21), 11028.
  • [44] Zhang, Y., Van den Berg, A. E., Van Dijk, T., & Weitkamp, G. (2017). Quality over Quantity: Contribution of Urban Green Space to Neighborhood Satisfaction. International journal of environmental research and public health, 14(5), 535.
  • [45] Capari L, Wilfing H, Exner A, Höflehner T, Haluza D. (2021) Cooling the City? A Scientometric Study on Urban Green and Blue Infrastructure and Climate Change-Induced Public Health Effects. Sustainability 14(9).
  • [46] Wuijts S, de Vries M, Zijlema W, Hin J, Elliott LR, Breemen LD van, et al. (2022 Jun 1). The health potential of urban water: Future scenarios on local risks and opportunities. Cities 125.
  • [47] Oral, H.V.; Radinja, M.; Rizzo, A.; Kearney, K.; Andersen, T.R.; Krzeminski, P.; Buttiglieri, G.; Ayral-Cinar, D.; Comas, J.; Gajewska, M.; Hartl, M.; Finger, D.C.; Kazak, J.K.; Mattila, H.; Vieira, P.; Piro, P.; Palermo, S.A.; Turco, M.; Pirouz, B.; Stefanakis, A.; Regelsberger, M.; Ursino, N.; Carvalho, P.N. (2021). Management of Urban Waters with Nature-Based Solutions in Circular Cities – Exemplified through Seven Urban Circularity Challenges. Water 13, 3334.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ae28f3dc-f695-4abd-9614-570d1e3274f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.