PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Asymptotic results for random polynomials on the unit circle

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we study the asymptotic behavior of the maximum magnitude of a complex random polynomial with i.i.d. uniformly distributed random roots on the unit circle. More specifically, let {nk}k=1 be an infinite sequence of positive integers and let {zk}k=1 be a sequence of i.i.d. uniformly distributed random variables on the unit circle. The above pair of sequences determine a sequence of random polynomials PN(z) = ΠNk=1 (z − zk)nk with random roots on the unit circle and their corresponding multiplicities. In this work, we show that subject to a certain regularity condition on the sequence {nk}k=1, the log maximum magnitude of these polynomials scales as sNI*, where s2N = ΣNk=1 n2k and I* is a strictly positive random variable.
Rocznik
Strony
181--197
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
  • Barclays Capital Inc., 745th Seventh Avenue, New York, 10007, USA
autor
  • Macquarie University, Dept. Engineering, Level 2, Building E6A, North Ryde, NSW 0209, Australia
Bibliografia
  • [1] M. V. Berry, Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature, J. Phys. A 35 (13) (2002), pp. 3025-3038.
  • [2] P. Billingsley, Weak Convergence of Probability Measures, Wiley, 1968.
  • [3] P. Billingsley, An Introduction to Probability and Measure, third edition, Wiley, 1995.
  • [4] P. Bleher and X. Di, Correlations between zeros of a random polynomial, J. Statist. Phys. 88 (1-2) (1997), pp. 269-305.
  • [5] A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. 32 (1995), pp. 1-37.
  • [6] P. Erdös and P. Turan, On the distribution of roots of polynomials, Ann. of Math. (2) 51 (1950), pp. 105-119.
  • [7] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, Wiley, 1957.
  • [8] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, Wiley, 1970.
  • [9] M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), pp. 314-320.
  • [10] H. McKean, Stochastic Integrals, Academic Press, New York 1969.
  • [11] A. Nordio, C.-F. Chiasserini, and E. Viterbo, Reconstruction of multidimensional signals from irregular noisy samples, IEEE Trans. Signal Process. 56 (9) (2008), pp. 4275-4285.
  • [12] L. C. G. Rogers and D. Williams, Diffusion, Markov Processes and Martingales. Volumne 1: Foundations, second edition, Wiley, 1994.
  • [13] L. A. Shepp and R. J. Vanderbei, The complex zeros of random polynomials, Trans. Amer. Math. Soc. 347 (1995), pp. 4365-4383.
  • [14] E. Shmerling and K. J. Hochberg, Asymptotic behavior of roots of random polynomial equations, Proc. Amer. Math. Soc. 130 (2002), pp. 2761-2770.
  • [15] G. H. Tucci and P. A. Whiting, Eigenvalue results for large scale Vandermonde matrices with unit complex entries, IEEE Trans. Inform. Theory 57 (6) (2011), pp. 3938-3954.
  • [16] G. H. Tucci and P. A. Whiting, Asymptotic behavior of the maximum and minimum singular value of random Vandermonde matrices, J. Theoret. Probab. (online version), December 2012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-158e0629-e8c2-4d80-8c8d-118fe054ed82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.