PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reactivity of chars gasified in a fixed bed reactor with the potential utilization of excess process heat

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work presented in this paper was to determine the reactivity of chars and their selection for further research purposes concerning coal gasification processes with the utilization of process excess heat. Char reactivity can be defined as the ability of coal to react with such reactants as steam, oxygen or carbon dioxide. Reactivity determines reaction rates and therefore it is a decisive factor relating to the efficiency of combustion and gasification processes. In light of the above, reactivity may be regarded as an important parameter to be considered in the design and operation of the industrial systems of coal processing. The experimental work was conducted by means of a thermogravimetric analyzer (TGA) at temperature ranges of 700, 800 and 900 °C, with oxygen as a gasifying agent. The parameters of maximum reactivity Rmax as well as of 50% of the conversion reactivity R50 were calculated. The times tmax and t50 necessary for attaining the maximum reactivity Rmax and 50% conversion reactivity R50 were also determined. The correlation between the experimentally determined values of Rmax, R50, tmax and t50,additionally the physico-chemical parameters of the coals were examined by means of PCA analysis.
Rocznik
Strony
156--161
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • Central Mining Institute, Department of Environmental Monitoring, Plac Gwarków 1, 40-166 Katowice, Poland
  • Central Mining Institute, Department of Energy Saving and Air Protection, Plac Gwarków 1, 40-166 Katowice, Poland
Bibliografia
  • 1. Alonso, S. J. G., Borrego, A. G., Alvarez, D., Parra, J. B., & Menéndez, R. (2001). Influence of pyrolysis temperature on char optical texture and reactivity. Journal of Analytical and Applied Pyrolysis, 58-59, 887-909.
  • 2. Arndt, E., Fischer, R., Froehling, W., Weisbrodt, I., Juentgen, H., & Teggers, H. (1979). Substitute natural gas from coal using high-temperature reactor heat - project Prototype Plant Nuclear Process Heat. Erdoel und Kohle Erdgas Petrochemie Vereinigt mit Brennstoff-Chemie, 32, 17-23.
  • 3. Ashu, J. T., & Walker, P. L. (1977). Effects of heat treatment conditions on reactivity of chairs in air. Report F.E. 2-30-TR3.
  • 4. Barnett, H. (1985). Energy alcohol from plant biomass plus high temperature heat, the CO2 - neutral, environmentally benign, and consumer friendly future alternative. Report Juel-3089.
  • 5. Beamish, B. B., Shaw, K. J., Rodgers, K. A., & Newman, J. (1998). Thermogravimetric determination of the carbon dioxide reactivity of char from some New Zealand coals and its association with the inorganic geochemistry of the parent coal. Fuel Processing Technology, 53(53), 243-253.
  • 6. Belghit, A., Gordillo, E. D., & El Issami, S. (2009). Coal steam-gasification model in chemical regime to produce hydrogen in a gas-solid moving bed reactor using nuclear heat. International Journal of Hydrogen Energy, 34(15), 6114-6119.
  • 7. Chiesa, P., Consonni, S., Kreutz, T., & Williams, R. (2005). Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: Performance and emissions. International Journal of Hydrogen Energy, 30(7), 747-767.
  • 8. Chmielniak, T., & Sciążko, M. (2008). Zgazowanie węgla. Stan rozwoju technologicznego. In T. Borowiecki, J. Kijenski, J. Machnikowski, & M. Sciążko (Eds.), Czysta energia. Produkty chemiczne i paliwa z węgla - ocena potencjału rozwojowego. Zabrze: Wydawnictwo IChPW.
  • 9. Cormos, C. C. (2010). Evaluation of energy integration aspects for IGCC-based hydrogen and electricity co-production with carbon capture and storage. International Journal of Hydrogen Energy, 35(14), 7485-7497.
  • 10. Cormos, C. C. (2011). Evaluation of power generation schemes based on hydrogenfuelled combined cycle with carbon capture and storage (CCS). International Journal of Hydrogen Energy, 36(5), 3726-3738.
  • 11. Filippov, G. A., Bogoyavlenskii, R. G., Ponomarev-Stepnoi, N. N., & Golapostsev, A. O. (2004). Modular high-temperature helium-cooled nuclear reactor with spherical fuel elements for electricity and hydrogen production. Atomic Energy, 96(3), 152-158.
  • 12. Gasification World Database. (2007). Current industry status, robust growth forecast. Retrived September 20, 2017 from http://energy.cleartheair.org.hk/wp-content/uploads/2013/07/Gasification2007_web1.pdf.
  • 13. Gordillo, E. D., & Belghit, A. (2011). A two phase model of high temperature steamonly gasification of biomass char in bubbling fluidized bed reactors using nuclear heat. International Journal of Hydrogen Energy, 36(1), 374-381.
  • 14. Gregg, D. W., & Edgar, T. F. (1978). Underground coal gasification. American Institute of Chemical Engineers Journal, 24, 753-781.
  • 15. Harth, R., Jansing, W., & Teubner, H. (1990). Experience gained from the eva II and KVK operation. Nuclear Engineering and Design, 121(2), 173-182.
  • 16. Hori, M. (2011). Nuclear carbonization and gasification of biomass for effective removal of atmospheric CO2. Progress in Nuclear Energy, 53, 1022-1026.
  • 17. Hori, M., Matsui, K., Tashimo, M., & Yasuda, I. (2005). Synergistic hydrogen production by nuclear-heated steam reforming of fossil fuels. Progress in Nuclear Energy, 47, 519-526.
  • 18. Howaniec, N., & Smoliński, A. (2014). Influence of fuel blend ash components on steam co-gasification of coal and biomass - chemometric study. Energy, 78, 814-825.
  • 19. Howaniec, N., Smoliński, A., & Cempa-Balewicz, M. (2015). Experimental study on application of high temperature reactor excess heat in the process of coal and biomass co-gasification to hydrogen-rich gas. Energy, 84, 455-461.
  • 20. Inaba, Y., Fumizawa, M., Tonogouchi, M., & Takenaka, Y. (2000). Coal gasification system using nuclear heat for ammonia production. Applied Energy, 67(4), 395-406.
  • 21. Joliffe, T. (1986). Principal components analysis (1st ed.). New York: Springer.
  • 22. Kubiak, H., Van Heek, K. H., & Ziegler, A. (1993). Nukleare Kohlevergasung - erreichter Stand, Einschatzung und Nutzung der Ergebnisse, Fortschritte in der Energietechnik. Monographien des Forschungszentrums Jülich, 8.
  • 23. Lee, I. (1987). Reactivity of coal-steam gasification at high temperature. Korean Journal of Chemical Engineering, 4, 196-200.
  • 24. Minchener, A. J. (2005). Coal gasification for advanced power generation. Fuel, 84(17), 2222-2235.
  • 25. NFE. (1985). Nukleare Fernenergie: zusammenfassender Bericht zum Projekt Nukleare Fernenergie (NFE). Report jül-spez-303.
  • 26. Piera, M., Martínez-Val, J. M., & Montes, J. M. (2006). Safety issues of nuclear production of hydrogen. Energy Conversion and Management, 47(17), 2732-2739.
  • 27. Porada, S., Dziok, T., Czerski, G., & Grzywacz, P. (2014). Porównanie reaktywności wybranych węgli kamiennych względem pary wodnej. Przegląd Górniczy, 70(11), 127-131.
  • 28. Smoliński, A. (2008). Gas chromatography as a tool for determining coal chars reactivity in a process of steam gasification. Acta Chromatographica, 20(3), 349-365.
  • 29. Smoliński, A. (2011). Coal char reactivity as a fuel selection criterion for coal-based hydrogen-rich gas production in the process of steam gasification. Energy Conversion and Management, 52(1), 37-45.
  • 30. Smoliński, A., Howaniec, N., & Stańczyk, K. (2011). A comparative experimental study of biomass, lignite and hard coal steam gasification. Renewable Energy, 36, 1836-1842.
  • 31. Smoliński, A., Stańczyk, K., Kapusta, K., & Howaniec, N. (2012). Chemometric study of the ex situ underground coal gasification wastewater experimental data. Water, Air, and Soil Pollution, 223(9), 5745-5758.
  • 32. Smoliński, A., Stańczyk, K., Kapusta, K., & Howaniec, N. (2013). Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 67(3), 644-650.
  • 33. Smoliński, A., Walczak, B., & Einax, J. W. (2002). Exploratory analysis of data sets with missing elements and outliers. Chemosphere, 49, 233-245.
  • 34. Starr, F., Tzimas, E., & Peteves, S. (2007). Critical factors in the design, operation and economics of coal gasification plants: The case of the flexible co-production of hydrogen and electricity. International Journal of Hydrogen Energy, 32(10-11), 1477-1485.
  • 35. Stańczyk, K., Howaniec, N., Smoliński, A., Świądrowski, J., Kapusta, K., Wiatowski, M., et al. (2011). Gasification of lignite and hard coal with air and oxygen enriched air in a pilot scale ex situ reactor for underground gasification. Fuel, 90(5), 1953-1962.
  • 36. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal components analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52.
  • 37. Yang, L., Liang, J., & Yu, L. (2003). Clean coal technology-Study on the pilot project experiment of underground coal gasification. Energy, 28(14), 1445-1460.
  • 38. Yang, L., Zhang, X., Liu, S., Yu, L., & Zhang, W. (2008). Field test of large-scale hydrogen manufacturing from underground coal gasification (UCG). International Journal of Hydrogen Energy, 33(4), 1275-1285.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36a38e12-f668-4a91-84a4-4b39423e19da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.