PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fraction solid evolution characteristics of AlSiCu alloys - dynamic baseline approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of the research presented in this paper is to gain a deeper understanding of dynamic solidification processes of metals and alloys through application of improved baseline and fraction solid methodologies to hypoeutectic aluminum-silicon alloys with varying concentrations of silicon and copper. Design/methodology/approach: The paper makes use of numerical models developed at the University of Windsor, including Newtonian Computer-Aided Cooling Curve Analysis and the Silicon Equivalency algorithm. Co-developed thermal analysis platforms are also used, including the Universal Metallurgical Simulator and Analyzer (UMSA) and the Aluminum Thermal Analysis Platform (AlTAP). Findings: This paper identifies key temperature and fraction solid values for hypoeutectic AlSiCu alloys across a wide range of chemistries. The paper also provides correlations whereby temperature/fraction solid values for metallurgical reactions can be predicted on the basis of chemistry. Research limitations/implications: Future work for the project will expand upon the relationships between important metallurgical events and alloy chemistries and derive general trends to enhance predictive capabilities. Practical implications: The data and techniques used in this paper may be used in order to improve simulations of casting processes. The relationships between solidification events and alloy chemistries will aid in the design and optimization of casting alloys and components. Originality/value: This paper would be of value to members of the engineering community who need precise information about fraction solid for use in designing alloys or optimizing technology and simulations of casting processes.
Słowa kluczowe
Rocznik
Strony
115--136
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
  • Department of Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
  • Department of Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
Bibliografia
  • [1] M.B. Djurdjevic, W. Kasprzak, C.A. Kierkus, J.H. Sokolowski, Quantification of Cu enriched phases in synthetic 3XX aluminum alloys using the thermal analysis technique, AFS Transactions, 2001.
  • [2] M. Djurdjevic, P. Gallo, H. Jiang, J.H. Sokolowski, Evaluation of strontium fading in the 319 aluminum alloy using thermal analysis, AFS Transactions 20 (2000) 485-486.
  • [3] M. Djurdjevic, T. Stockwell and J. H. Sokolowski, The effect of strontium on the microstructure of aluminum-silicon and aluminum-copper eutectics in the 319 Alloy, International Journal of Cast Metals Research 12 (1999) 67-73.
  • [4] M. Djurdjevic, W.T. Kierkus, R. Liliak, J.H. Sokolowski, Extended analysis of cooling curves, Proceedings of the 41st Conference of Metallurgists COM’2002, Montreal, 2002.
  • [5] H. Jiang, W. Kierkus and J. H. Sokolowski, Dendrite coherency point determination using thermal analysis and rheological measurements, Proceedings of the International Conference on Thermophysical Properties of Materials TPPM’99, Singapore, 1999.
  • [6] R. MacKay, M. Djurdjevic, J.H. Sokolowski, W. Evans, Using the method of a in-situ thermal analysis array in a cast section to assess riser feeding efficiency, Proceedings of the 131st TMS Annual Meeting, Seattle, Washington, 2002, 1721.
  • [7] R. MacKay, M. Djurdjevic, et al., Effect of cooling rate on fraction solid of metallurgical reactions in 319 alloy, AFS Transactions 25 (2000) 521-529.
  • [8] X. Chen, W. Kasprzak, J.H. Sokolowski, Reduction of the heat treatment process for the Al-based alloys by utilization of heat from solidification process, Journal of Materials Processing Technology 176 (2006) 24-31.
  • [9] L. Backerud, G. Chai, J. Tamminen, Solidification characteristics of aluminum alloys, AFS-Skanaluminium, 1990.
  • [10] R. Mackay, J. Sokolowski, Experimental observations of dendrite coarsening and Al-Si eutectic growth in progressively quenched structures of Al-Si-Cu casting alloys, International Journal of Metalcasting Spring (2008) 57-80.
  • [11] J. Barlow, D.M. Stefanescu, Computer aided cooling curve analysis revisited, unpublished, 1996.
  • [12] W.T. Kierkus, J.H. Sokolowski, Recent advances in cooling curve analysis: A new method of determining the 'Base Line' equation, AFS Transactions 66 (1999) 161-167.
  • [13] E. Fras, W. Kapturkiewicz, A. Burbielko, H.F. Lopez, A New concept in thermal analysis of castings, AFS Transactions 101 (1993) 505-511.
  • [14] D. Emadi, L. Whiting, M. Djurdjevic, W.T. Kierkus, J.H. Sokolowski, Comparison of newtonian and fourier thermal analysis techniques for calculation of latent heat and solid fraction of aluminum alloys, Metalurgija (2004) 91-106.
  • [15] D.M. Stefanescu, G. Upadhya, D. Bandyopadhyay, Heat transfer-solidification kinetics modeling of solidifcation of castings, Metallurgical Transactions A 21 (1990) 997-1005.
  • [16] D.M. Stefanescu, Solidification of flake, compacted, vernicular and spheroidal graphite cast irons as revealed by thermal analysis and directional solidification experiments, Material Research Society Symposium Proceedings, 34, 1985.
  • [17] K.G. Upadhya, D.M. Stefanescu, K. Lieu, D.P. Yaeger, Computer-aided cooling curve analysis: principles and applications in metal casting, AFS Transactions 97 (1989) 61-66.
  • [18] S.H. Jong, W.S. Hwang, Study of functional relationships of fraction solid with temperature in mushy range for the A356 Al alloy, AFS Transactions 92 (1992) 939-946.
  • [19] J. Tamminen, Thermal analysis for investigation of solidification mechanisms in metals and alloys, Chemical Communications, University of Stockholm, 1988.
  • [20] L. Arnberg, L. Bäckerud, Solidification characteristics of aluminum alloys, Vol. 3: Dendrite coherency, American Foundrymen’s Society, Inc, 1996.
  • [21] H. Jiang, W.T. Kierkus, J.H. Sokolowski, Determining dendrite coherency point characteristics of Al alloys using single-thermocouple technique, AFS Transactions 68 (1999) 169-172.
  • [22] R. Chavez-Zamarripa, J. Angelica Ramos-Salas, J. Talamentes-Silva, S. Valtierra, R. Colas, Determination of the dendrite coherency point during solidification by means of thermal diffusivity, Metallurgical and Materials Transactions A 38 (2007) 1875-1879
  • [23] S. Gowri, Comparison of thermal analysis parameters of 356 and 359 alloys, AFS Transactions 94-29 (1994) 503-508.
  • [24] H.G. Kang, H. Miyahara, K. Ogi, Influence of cooling rate and additions of Sr and Ti-B on solidification structures of AC4B type alloy, Proceedings of the 3rd Asian Foundry Congress, edited by Z.H. Lee, C.P. Hong, M.H. Kim, The Korean Foundrymen’s Society, Kyongju, Korea, 1995, 108115.
  • [25] Y.F. Chen, S.H. Jong, W.S. Hwang, The effect of cooling rate on the latent heat released mode for near pure aluminum and aluminum silicon alloy, Modelling of casting, welding and advanced solidification processes VII Edition by M. Cross, J. Campbell, The Minerals, Metals and Materials Society (1995) 483-490.
  • [26] L. Ananthanarayanan, F.H. Samuel, J. Gruzleski, The thermal analysis studies on the effect of cooling rate on the microstructure of the 319 aluminum alloy, AFS Transactions 92-141, 383-391.
  • [27] A.M. Figueredo, Y. Sumartha, M.C. Flemings, Measurement and calculation of solid fraction in quenched semi-solid melts of rheocast aluminum alloy A357, Light Metals edited by Barry Welch, The Minerals, Metals and Materials Society, 1998, 1103-1106.
  • [28] G. Chai, Dendrite coherency during equiaxed solidification in aluminum alloys, Ph.D. Thesis, Department of Structural Chemistry, Arrhenius Laboratory, Stockholm University, 1994.
  • [29] L. Arnberg, L. Bäckerud, G. Chai, Solidification characteristics of aluminum alloys, Vol. 3: Dendrite Coherency, American Foundrymen’s Society, Inc., Des Plaines,1996.
  • [30] E. Tzimas, A. Zavaliangos, Evaluation of volume fraction of solid in alloys formed by semisolid processing”, Journal of Materials Science 35 (2000) 5319-5329.
  • [31] J. Wannasin, R. Canyook, R. Burapa, L. Sikong, M.C. Flemings, Evaluation of solid fraction in a rheocast aluminum die casting alloy by a rapid quenching method, Scripta Materialia 59 (2008) 1091-1094.
  • [32] M.C. Flemings, Solidification processing, McGraw-Hill, Inc., 1972.
  • [33] S. Ohta, K. Asai, The behaviour of temperature decreasing and fraction solid increasing in solid-liquid coexisting zone in solidification process of aluminum alloy weld metal, Transactions of the Japan Welding Society 24/2 (1993) 131139.
  • [34] N. Saunders, Phase diagram calculations for commercial Al-alloys, Material Science Forum SF2M and INPG, Grenoble, 217-222/2 (1996) 667-672.
  • [35] J.H. Chen, H.L. Tsai, Comparison of different models of latent heat release for modeling casting solidification, AFS Transactions (1990) 539-546.
  • [36] C.S. Kantekar, D.M. Stefanescu, Macro-micro modeling of solidification of hypoeutectic and eutectic Al-Si alloys, AFS Transactions 60 (1988) 591-598.
  • [37] H. Huang, V.K. Suri, J.L. Hill, J.T. Berry, Heat source/sink algorithm for modeling phase changes durings in castings and water evaporation in green sand molds, AFS Transactions) 54 (1991) 685-689.
  • [38] M. Rapaz, Modeling of microstructure formation in solidification processes, International Materials Reviews 34/3(1989) 93-123.
  • [39] W. Kurz, D.J. Fisher, Fundamentals of solidification, Trans Tech Publications, U.K.-USA, 1986.
  • [40] S. Jeng, S. Chai, Determination of the solidification characteristics of the A356.2 aluminum alloy, Material Science Forum 217-222 (1996) 283-288.
  • [41] M. Kiuchi, S. Sigiyama, A new method to detect solid fraction of mushy/semi solid metals and alloys, Annals of the CIRP 43/1 (1994) 271-274.
  • [42] N. Saunders, Z. Guo, A.P. Miodownik, J.-Ph. Schillé, Modelling the material properties and behaviour of Ni- and NiFe-based superalloys, Superalloys 718, 625, 706 and Various Derivatives (2006) 571-580.
  • [43] K.P. Sołek, R.M. Kuziak, M. Karbowniczek, The application of thermodynamic calculations for the semi-solid processing design, Archives of Metallurgy and Materials 52/1 (2007) 25-32.
  • [44] M.B. Djurdjevic, W.T. Kierkus, et al., Modeling of fraction solid for the 319 aluminum alloy, AFS Transactions 14 (1999) 173-179.
  • [45] A.Zavaliangos, E. Tzimas, On the approximation of the partial areas method in the calculation of the fraction of solid, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 31/4 (2000) 877-879.
  • [46] M.B. Djurdjevic, A. Mitrasonovic, J.H. Sokolowski, Development of the Silicon Equivalent (SiEQ) algorithm and its application for calculation of the characteristic temperatures of solidification multi-component 3XX series of Al alloys, Proceedings of the 15th International Conference and Exposition for the Foundry Industry, Monterrey, Mexico, 2003, 214-226.
  • [47] F.C.R. Hernandez, M.B. Djurdjevic, W.T. Kierkus, J.H. Sokolowski, Calculation of the liquidus temperature for hypo and hypereutectic aluminum silicon alloys, Materials Science and Engineering A 396/1-2 (2005) 271-276.
  • [48] J.L. Murray, A.J. McAlister, The Al-Si (aluminum-silicon) casting system, Bulletin of Alloy Phase Diagrams 5/1 (1984) 74-84.
  • [49] W.J. Boettinger, U.R. Kattner, K.W. Moon, J.H. Perepezko, DTA and heat-flux DSC measurements of alloy melting and freezing, NIST Recommended Practice Guide Special Publication 960-15, National Institute of Standards and Technology, Washington, DC, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27a0435c-aeb1-45be-be39-1ca693cf2277
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.