PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel type of wearable dual-band antenna based on coplanar waveguide feeding for wearable wireless communications

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A flexible and compact coplanar waveguide feed (CPW-fed) wearable antenna is introduced for wireless wearable communications applications at the industrial scientific medical (ISM) band. The proposed antenna consists of copper, which is used as the radiation patch and ground planes printed on the same side of polyimide flexible substrate. The overall size of the antenna is 30 mm × 28 mm × 0.08 mm, the results show that the antenna can transmit and receive signals in two frequency bands of 1.89–2.67 GHz and 3.02–3.23 GHz, in which radiating properties are characterized and agree well with the simulation results. The antenna is bent in different directions to further investigate the reflection coefficient and corresponding effect on the antenna under bending. The center frequency of the antenna is slightly shifted towards higher and lower frequencies when antenna is bent in X-axis and Y-axis, respectively. Furthermore, the wearability of the antenna is verified when the antenna is placed on different parts of the human body such as wrist and chest. Hence, the proposed flexible antenna is a suitable candidate for wearable wireless communication applications.
Słowa kluczowe
Czasopismo
Rocznik
Strony
159--170
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
  • School of Electronic Information Engineering, Tianjin University, China
autor
  • School of Electronic Information Engineering, Tianjin University, China
Bibliografia
  • [1] ITO K., LIN H.Y., LIN C.H., Novel small antennas for body-centric wireless communications, [In] 2012 Asia Pacific Microwave Conference Proceedings, IEEE, Kaohsiung, Taiwan, December 4–7, 2012, pp. 424–426, DOI:10.1109/APMC.2012.6421619.
  • [2] TAHIR F.A., JAVED A., A compact dual-band frequency-reconfigurable textile antenna for wearable applications, Microwave and Optical Technology Letters 57(10), 2015, pp. 2251–2257, DOI:10.1002/mop.29311.
  • [3] HAO Y., ALOMAINY A., HALL P.S., NECHAYEV Y.I., PARINI C.G., CONSTANTINOU C.C., Antennas and propagation for body centric wireless communications, [In] IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, IEEE, Honolulu, HI, USA, April 3–7, 2005, pp. 1–7, DOI:10.1109/WCACEM.2005.1469656.
  • [4] RAAD H.R., ABBOSH A.I., AL-RIZZO H.M., RUCKER D.G., Flexible and compact AMC based antenna for telemedicine applications, IEEE Transactions on Antennas and Propagation 61(2), 2013, pp. 524–531, DOI:10.1109/TAP.2012.2223449.
  • [5] SONG L., MYERS A.C., ADAMS J.J., ZHU Y., Stretchable and reversibly deformable radio frequency antennas based on silver nanowires, ACS Applied Materials & Interfaces 6(6), 2014, pp. 4248–4253, DOI:10.1021/am405972e.
  • [6] RAI T., DANTES P., BAHREYNI B., KIM W.S., A stretchable RF antenna with silver nanowires, IEEE Electron Device Letters 34(4), 2013, pp. 544–546, DOI:10.1109/LED.2013.2245626.
  • [7] LLATSER I., KREMERS C., CABELLOS-APARICIO A., JORNET J.M., ALARCÓN E., CHIGRIN D.N., Graphene-based nano-patch antenna for terahertz radiation, Photonics and Nanostructures: Fundamentals and Applications 10(4), 2012, pp. 353–358, DOI:10.1016/j.photonics.2012.05.011.
  • [8] GUO X., HUANG Y., ZHAO Y., MAO L., GAO L., PAN W., ZHANG Y., LIU P., Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition, Smart Materials and Structures 26(9), 2017, article 095017, DOI:10.1088/1361-665X/aa79c3.
  • [9] HASSAN A., ALI S., HASSAN G., BAE J., LEE C.H., Inkjet-printed antenna on thin PET substrate for dual band Wi-Fi communications, Microsystem Technologies 23(8), 2017, pp. 3701–3709, DOI:10.1007/s00542-016-3113-y.
  • [10] HUANG G.W., XIAO H.M., FU S.Y., Wearable electronics of silver-nanowire/poly(dimethylsiloxane) nanocomposite for smart clothing, Scientific Reports 5, 2015, article 13971, DOI:10.1038/srep13971.
  • [11] QIU Y., JUNG Y.H., LEE S., SHIH T.Y., LEE J., XU Y.H., XU R., LIN W., BEHDAD N., MA Z., Compact parylene-c-coated flexible antenna for WLAN and upper-band UWB applications, Electronics Letters 5(24), 2014, pp. 1782–1784.
  • [12] CHANG MIN LEE, YOUNGSUNG KIM, YONGJIN KIM, IL KWON KIM, CHANG WON JUNG, A flexible and transparent antenna on a polyamide substrate for laptop computers, Microwave and Optical Technology Letters 57(5), 2015, pp. 1038–1042, DOI:10.1002/mop.29011.
  • [13] WHITTOW W.G., CHAURAYA A., VARDAXOGLOU J.C., LI Y., TORAH R., YANG K., BEEBY S., TUDOR J., Inkjet-printed microstrip patch antennas realized on textile for wearable applications, IEEE Antennas and Wireless Propagation Letters 13, 2014, pp. 71–74, DOI:10.1109/LAWP.2013.2295942.
  • [14] SHIM B.S., CHEN W., DOTY C., XU C.L., KOTOV N.A., Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes, Nano Letters 8(12), December 2008, pp. 4151–4157, DOI:10.1021/nl801495p.
  • [15] QU S.W., RUAN C., WANG B.Z., Bandwidth enhancement of wide-slot antenna fed by CPW and microstrip line, IEEE Antennas and Wireless Propagation Letters 5, 2006, pp. 15–17, DOI:10.1109/LAWP.2005.863616.
  • [16] CHAIR R., KISHK A.A., LEE K.F., SMITH C.E., KAJFEZ D., Microstrip line and CPW FED ultra wideband slot antennas with U-shaped tuning stub and reflector, Progress in Electromagnetics Research, PIER 56, 2006, pp. 163–182, DOI:10.2528/PIER05060701.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bdb30b2b-62a9-4578-9391-116ace3af991
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.