PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of gillespie algorithm for simulating evolution of fitness of microbial population

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study we present simulation system based on Gillespie algorithm for generating evolutionary events in the evolution scenario of microbial population. We present Gillespie simulation system adjusted to reproducing experimental data obtained in barcoding studies – experimental techniques in microbiology allowing tracing microbial populations with very high resolution. Gillespie simulation engine is constructed by defining its state vector and rules for its modifications. In order to efficiently simulate barcoded experiment by using Gillespie algorithm we provide modification – binning cells by lineages. Different bins define components of state in the Gillespie algorithm. The elaborated simulation model captures events in microbial population growth including death, division and mutations of cells. The obtained simulation results reflect population behavior, mutation wave and mutation distribution along generations. The elaborated methodology is confronted against literature data of experimental evolution of yeast tracking clones sub-generations. Simulation model was fitted to measurements in experimental data leading to good agreement.
Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
  • Department of Computer Graphics, Vision and Digital Systems, Silesian University of Technology, Gliwice, Poland
  • Department of Computer Graphics, Vision and Digital Systems, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] Baar, M., Coquille, L., Mayer, H., Hölzel, M., Rogava, M., Tüting, T., & Bovier, A. (2016). A stochastic model for immunotherapy of cancer. Scientific Reports, 6(1), 24169. https://doi.org/10.1038/srep24169
  • [2] Beckman, R. A., & Loeb, L. A. (2005). Negative Clonal Selection in Tumor Evolution. Genetics, 171(4), 2123–2131. https://doi.org/10.1534/genetics.105.040840
  • [3] Blundell, J. R., Schwartz, K., Francois, D., Fisher, D. S., Sherlock, G., & Levy, S. F. (2019). The dynamics of adaptive genetic diversity during the early stages of clonal evolution. Nature Ecology & Evolution, 3(2), 293–301. https://doi.org/10.1038/s41559-018-0758-1
  • [4] Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., Karchin, R., Kinzler, K. W., Vogelstein, B., & Nowak, M. A. (2010). Accumulation of driver and passenger mutations during tumor progression. Proceedings of the National Academy of Sciences, 107(43), 18545–18550. https://doi.org/10.1073/pnas.1010978107
  • [5] Bush, S. J., Foster, D., Eyre, D. W., Clark, E. L., De Maio, N., Shaw, L. P., Stoesser, N., Peto, T. E. A., Crook, D. W., & Walker, A. S. (2020). Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines. GigaScience, 9(2), giaa007. https://doi.org/10.1093/gigascience/giaa007
  • [6] Cao, Y., Gillespie, D. T., & Petzold, L. R. (2006). Efficient step size selection for the tau-leaping simulation method. The Journal of Chemical Physics, 124(4), 044109. https://doi.org/10.1063/1.2159468
  • [7] Castillo, F., & Virgilio, N. (2015). Stochastic Modeling of Cancer Tumors using Moran Models and an Application to Cancer Genetics [Thesis, Rice University]. https://scholarship.rice.edu/handle/1911/87795
  • [8] Desai, M. M., & Fisher, D. S. (2007). Beneficial Mutation–Selection Balance and the Effect of Linkage on Positive Selection. Genetics, 176(3), 1759–1798. https://doi.org/10.1534/genetics.106.067678
  • [9] Foo, J., Leder, K., & Michor, F. (2011). Stochastic dynamics of cancer initiation. Physical Biology, 8(1), 015002. https://doi.org/10.1088/1478-3975/8/1/015002
  • [10] Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chemically reacting systems. The Journal of Chemical Physics, 115(4), 1716–1733. https://doi.org/10.1063/1.1378322
  • [11] Kinnersley, M., Schwartz, K., Yang, D.-D., Sherlock, G., & Rosenzweig, F. (2021). Evolutionary dynamics and structural consequences of de novo beneficial mutations and mutant lineages arising in a constant environment. BMC Biology, 19(1), 20. https://doi.org/10.1186/s12915-021-00954-0
  • [12] Kvitek, D. J., & Sherlock, G. (2013). Whole Genome, Whole Population Sequencing Reveals That Loss of Signaling Networks Is the Major Adaptive Strategy in a Constant Environment. PLOS Genetics, 9(11), e1003972. https://doi.org/10.1371/journal.pgen.1003972
  • [13] Levy, S. F., Blundell, J. R., Venkataram, S., Petrov, D. A., Fisher, D. S., & Sherlock, G. (2015). Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature, 519(7542), 181–186. https://doi.org/10.1038/nature14279
  • [14] Marchetti, L., Priami, C., & Thanh, V. H. (2017). Simulation Algorithms for Computational Systems Biology. Springer International Publishing. https://doi.org/10.1007/978-3-319-63113-4
  • [15] McFarland, C. D., Mirny, L. A., & Korolev, K. S. (2014). Tug-of-war between driver and passenger mutations in cancer and other adaptive processes. Proceedings of the National Academy of Sciences, 111(42), 15138–15143. https://doi.org/10.1073/pnas.1404341111
  • [16] Neher, R. A. (2013). Genetic draft, selective interference, and population genetics of rapid adaptation. Annual Review of Ecology, Evolution, and Systematics, 44(1), 195–215. https://doi.org/10.1146/annurev-ecolsys-110512-135920
  • [17] Nguyen Ba, A. N., Cvijović, I., Rojas Echenique, J. I., Lawrence, K. R., Rego-Costa, A., Liu, X., Levy, S. F., & Desai, M. M. (2019). High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast. Nature, 575(7783), 494–499. https://doi.org/10.1038/s41586-019-1749-3
  • [18] Wang, C.-H., Matin, S., George, A. B., & Korolev, K. S. (2019). Pinned, locked, pushed, and pulled traveling waves in structured environments. Theoretical Population Biology, 127, 102–119. https://doi.org/10.1016/j.tpb.2019.04.003
  • [19] Wild, G. (2011). Inclusive Fitness from Multitype Branching Processes. Bulletin of Mathematical Biology, 73(5), 1028–1051. https://doi.org/10.1007/s11538-010-9551-2
  • [20] Yakovlev, A. Y., Stoimenova, V. K., & Yanev, N. M. (2008). Branching Processes as Models of Progenitor Cell Populations and Estimation of the Offspring Distributions. Journal of the American Statistical Association, 103(484), 1357–1366. https://doi.org/10.1198/016214508000000913
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8d70b5e-9d64-4bf3-a254-195be1eccb50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.