PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Catalyst regeneration techniques in naphtha reforming: Short review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
The International Chemical Engineering Conference 2021 (ICHEEC): 100 Glorious Years of Chemical Engineering and Technology, September 16–19, 2021
Języki publikacji
EN
Abstrakty
EN
Catalytic reforming is an important intermediate in the processing of crude (naphtha in particular) to obtain gasoline. The catalyst used in the process (platinum) is quite expensive and may negatively impact the business if not used judiciously. The aforesaid not only refers to the reduction in loss of the catalyst per unit of gasoline produced but also to the manufacturing of an environmentally friendlier product alongside which is the need of the planet and also a necessity to meet the increasingly strict government norms. In order to meet the above requirements, various refineries around the world use various well-known conventional methods which depend on the quality and quantity of crude manufactured by them. This paper focuses on highlighting recent advancements in methods of catalytic regeneration (CR) in the reforming unit of petroleum industries to produce high octane gasoline, without any major replacements in their existing setup. Research papers formulated by the application of methodologies involving non-linear models and real-time refinery data have only been considered to avoid any deviations/errors in practical applications. In-depth analysis of these papers has led to the origin of some ideas which have been included as suggestions and can be considered as subjects of further research. In all, the objective of the paper is to serve as a reference for researchers and engineers working on devising optimum methods to improve the regeneration of reforming catalysts.
Rocznik
Strony
101–--108
Opis fizyczny
Bibliogr. 26 poz., il.
Twórcy
autor
  • Harcourt Butler Technical University, Department of Chemical Engineering, Kanpur-208002, India
autor
  • Harcourt Butler Technical University, Department of Chemical Engineering, Kanpur-208002, India
Bibliografia
  • 1. Antos G.J., Aitani A.M., 2004. Catalytic naphtha reforming. Revised and expanded. Second edition. Marcel Dekker, Inc. New York.
  • 2. Arani H.M., Shirvani M., Safdarian K., Dorostkar E., 2009. Lumping procedure for a kinetic model of catalytic naphtha reforming. Braz. J. Chem. Eng., 26, 723–732. DOI: 10.1590/s0104-66322009000400011.
  • 3. Argyle M.D., Bartholomew C.H., 2015. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts, 5, 145–269. DOI: 10.3390/catal5010145.
  • 4. Babaqi B.S., Takriff M.S., Kamaruddin S.K., Othman N.T.A., Ba-Abbad M.M., 2016. Comparison of catalytic reforming processes for process integration opportunities: Brief review. Int. J. Appl. Eng. Res., 11, 9984–9989.
  • 5. Bartholomew C.H., 2001. Mechanisms of catalyst deactivation. Appl. Catal., A, 212(1–2), 17–60. DOI: 10.1016/S0926-860X(00)00843-7.
  • 6. Ciapetta F.G., Wallace D.N., 1972. Catalytic naphtha reforming. Catalysis Reviews 5, 67–158. DOI: 10.1080/01614947208076866.
  • 7. D’Ippolito S.A., Vera C.R., Epron F., Especel C., Marécot P., Pieck C.L., 2008. Naphtha reforming Pt-Re-Ge/𝛾-Al2O3 catalysts prepared by catalytic reduction: Influence of the pH of the Ge addition step. Catal. Today, 133–135,13-1-9. DOI: 10.1016/j.cattod.2007.11.014.
  • 8. Elfghi F.M., 2016. Catalytic naphtha reforming; challenges for selective gasoline; an overview and optimization case study. J. Adv. Catal. Sci. Technol., 3, 27–42. DOI: 10.15379/2408-9834.2016.03.01.04.
  • 9. Hongjun Z., Mingliang S., Huixin W., Zeji L., Hongbo J., 2010. Modeling and simulation of moving bed reactor for catalytic naphtha reforming. Pet. Sci. Technol., 28, 667–676. DOI: 10.1080/10916460902804598.
  • 10. Jess A., Hein O., Kern C., 1999. Deactivation and decoking of a naphtha reforming catalyst. Stud. Surf. Sci. Catal., 126, 81–88). DOI: 10.1016/S0167-2991(99)80453-4.
  • 11. Krane H.G., Groh A.B., Schulman B.L., Sinfelt J.H., 1959. Reactions in catalytic reforming of naphthas. 5𝑡 ℎ World Petroleum Congress. New York, USA, May 30–June 5 1959, 39–54.
  • 12. Lee D.W., Yoo B.R., 2014. Advanced metal oxide (supported) catalysts: Synthesis and applications. J. Ind. Eng. Chem., 20, 3947–3959. DOI: 10.1016/j.jiec.2014.08.004.
  • 13. McClung R.G., Oyekan S.O., 1988. Sulfur sensitivity of Pt/Re catalysts in naphtha reforming. American Institute of Chemical Engineers spring national meeting. New Orleans, LA (USA), 6–10 Mar 1988. Other Information: Tech. Pap. 44F.
  • 14. Mills G.A., Heinemann H., Milliken T.H., Oblad A.G., 1953. (Houdriforming Reactions) Catalytic Mechanism. Ind. End. Chem., 45, 134–137. DOI: 10.1021/ie50517a043.
  • 15. Mohaddecy R.S., Sadighi S., 2014. Developing a steady-state kinetic model for industrial scale semi-regenerative catalytic naphtha reforming process. Kem. Ind., 63, 149–154. DOI: 10.15255/KUI.2013.009.
  • 16. Pashikanti K., Liu Y.A., 2011. Predictive modeling of large-scale integrated refinery reaction and fractionation systems from plant data. Part 3: Continuous catalyst regeneration (CCR) reforming process. Energy fuels, 25, 5320–5344. DOI: 10.1021/ef200751c.
  • 17. Rahimpour M.R., Jafari M., Iranshahi D., 2013. Progress in catalytic naphtha reforming process: A Review. Appl. Energy, 109, 79–93. DOI: 10.1016/j.apenergy.2013.03.080.
  • 18. Ramage M.P., Graziani K.R., Krambeck F.J., 1980. 6 Development of mobil’s kinetic reforming model. Chem. Eng. Sci., 35, 41–48. DOI: 10.1016/0009-2509(80)80068-6.
  • 19. Ren X.-H., Bertmer M., Stapf S., Demco D.E., Blümich B., Kern C., Jess A., 2002. Deactivation and regeneration of a naphtha reforming catalyst. Appl. Catal., A, 228(1–2), 39–52. DOI: 10.1016/S0926-860X(01)00958-9.
  • 20. Said-Aizpuru O., Allain F., Diehl F., Farrusseng D., Joly J.F., Dandeu A., 2020. A naphtha reforming proces development methodology based on the identification of catalytic reactivity descriptors. New J. Chem., 44, 7243– 7260. DOI: 10.1039/C9NJ05349B.
  • 21. Sa’idi M., Mostoufi N., Gharebagh R.S., 2011. Modelling and simulation of Continuous Catalytic Regeneration (CCR) Process. 07𝑡 ℎ International Congress on Chemical Engineering, Kish Island, 21 November 2011. Available at: https://civilica.com/doc/340988.
  • 22. Samimi A., Zarinabadi S., Kootenaei A.H.S., Azimi A., Mirzaei M., 2020. Kinetic overview of catalytic reforming units (fixed and continuous reforming). Chem. Methodologies, 4(3), 245–257. DOI: 10.33945/SAMI/CHEMM.2020.3.3.
  • 23. Schorfheide J.J., Schweizer A.E., 1993. Cyclic reforming catalyst regeneration. ExxonMobil Research and Engineering Co. US Patent No: US5391292A.
  • 24. Aviral Gupta, S.K. Gupta, Chem. Process Eng., 2022, 43 (2), 101–108
  • 25. Szczygieł J., 2011. Control of transport phenomena in the interior of the reforming catalyst grain: A new approach to the optimisation of the reforming process. Fuel Process. Technol., 92, 1434–1448. DOI: 10.1016/j.fuproc.2011.03.004.
  • 26. Yusuf A.Z., Aderemi B.O., Patel R., Mujtaba I.M., 2019. Study of industrial naphtha catalytic reforming reactions via modelling and simulation. Processes 7, 192. DOI: 10.3390/pr7040192.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1ccc22f-4d24-4b4a-9542-94004a6c2555
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.