PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanics of seabed liquefaction and resolidification

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of pore water pressure changes in the seabed is considered. Two mechanisms of pore pressure changes are distinguished. The first is caused by external excitations, such as earthquakes, when pore pressure is gradually generated, leading to liquefaction. The second mechanism is caused by water waves, and it leads to cyclic changes in pore water pressure and the mean effective stress. Under certain conditions, when the effective stress path tends to exceed the failure condition, the regrouping of effective stresses takes place, as the soil should accommodate to new conditions. Then, the mechanism of resolidification of the seabed is described. It is concluded that after resolidification, the seabed is in a virgin state, as liquefaction erases the previous history of the seabed structure. A critical discussion of selected existing approaches to the problem of pore-pressure changes and the mechanism of liquefaction is presented in detail, in the form of extensive appendices. Some of these appendices deal with the crucial aspects of the mechanics of liquefaction such as, for example, the drained/undrained conditions.
Rocznik
Strony
307–--328
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • Institute of Hydro-Engineering, IBW PAN, Gdańsk, Poland
Bibliografia
  • 1. M.B. de Groot, M.D. Bolton, P. Foray, P. Meijers A.C. Palmer, R. Sandven, A. Sawicki, T.C. Teh, Physics of liquefaction phenomena around marine structures, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 132, 4, 227–243, 2006.
  • 2. M. Sumer, private communication, 2003. Mechanics of seabed liquefaction and resolidification
  • 3. A. Sawicki, R. Staroszczyk, Wave-induced stresses and pore pressures near a mudline, Oceanologia, 50, 4, 539-555, 2008.
  • 4. M. Jefferies, K. Been, Soil Liquefaction. A Critical State Approach, Taylor & Francis, London and New York, 2006.
  • 5. K. Ishihara, Soil Behaviour in Earthquake Geotechnics, Clarendon Press, Oxford, 1996.
  • 6. P.V. Lade, J.A. Yamamuro, Physics and Mechanics of Soil Liquefaction, Balkema, Rotterdam/Brookfield, 1999.
  • 7. A. Sawicki, J. Mierczyński, Developments in modelling liquefaction of granular soils, caused by cyclic loads, Applied Mechanics Reviews, ASME, 59, March, 91–106, 2006.
  • 8. G. Gudehus, Physical Soil Mechanics, Springer, Heidelberg/Dordrecht/London/New York, 2011.
  • 9. B.M. Sumer, J. Fredsoe, The Mechanics of Scour in the Marine Environment, World Scientific, New Jersey/Singapore/London/Hong Kong, 2002.
  • 10. B.M. Sumer, F. Hatipoglu, J. Fredsoe, S.K. Sumer, The sequence of sediment behaviour during wave-induced liquefaction, Sedimentology, 53, 611–629, 2006.
  • 11. V.S.O. Kirca, B.M. Sumer, J. Fredsoe, Residual liquefaction under standing waves, Proc. 22nd Int. Offshore and Polar Eng. Conf., Rhodes, Greece, 1392-1398, 2012.
  • 12. D.S. Jeng, Porous Models for Wave-Seabed Interactions, Springer, Heidelberg/New York/Dordrecht/London, 2013.
  • 13. A. Sawicki, W. Świdziński, Stress–strain relations for dry and saturated sands. Part I: Incremental model, Jnl Theoretical & Applied Mechanics, 48, 2, 2010a.
  • 14. A. Sawicki, W. Świdziński, Stress-strain relations for dry and saturated sands. Part II: Predictions, Jnl Theoretical & Applied Mechanics, 48, 2, 2010b.
  • 15. P.L. Liu Damping of water waves over porous bed, Jnl Hydraulic Div., ASCE, 99, HY 12, 2263–2271, 1973.
  • 16. C.S. Martin Effects of a porous sand bed on incipient sediment motion, Jnl Water Resources Research, 6, 4, 1162–1174, 1970.
  • 17. S.R. Massel Gravity waves propagated over permeable bottom, Jnl Waterways, Harbors and Coastal Engineering, ASCE, 102, WW 2, 11-21, 1976.
  • 18. J.A. Putnam, Loss of wave energy due to percolation in a permeable sea bottom, Trans. American Geophysical Union, 30, 349–356, 1949.
  • 19. R.O. Reid, K. Kajiura, On the damping of gravity waves over a permeable seabed, Trans. American Geophysical Union, 38, 662-666, 1957.
  • 20. J.F.A. Sleath, Wave-induced pressures in beds of sand, Jnl Hydraulics Div., ASCE, HY 2, 367–378, 1970.
  • 21. H. Moshagen, A. Torum, Wave induced pressures in permeable seabeds, Jnl Waterways, Harbors and Coastal Eng., ASCE, 101, WW 1, 49–57, 1975.
  • 22. J.H. Prevost, O. Eide, K.H. Anderson, Wave induced pressures in permeable seabeds, Jnl Waterways, Harbors & Coastal Eng., ASCE, 101, WW 4, 464–465, 1975.
  • 23. T. Yamamoto, H.L. Koning, H. Sellmeijer, E. van Hijum, On the response of a poroelastic bed to water waves, Jnl Fluid Mechanics, 87, part 1, 193–206, 1978.
  • 24. C.C. Mei, M.A. Foda, Wave-induced stresses around a pipe laid on a poro-elastic sea bed, Geotechnique, 31, 4, 509–517, 1981.
  • 25. R.F. Craig, Soil Mechanics, Van Nostrand Reinhold (UK), Wokingham, Berkshire, England, 1987.
  • 26. W.G. McDougal, Y.T. Tsai, P.L.-F. Liu, E.C. Clukey, Wave-induced pore water pressure accumulation in marine soils, Jnl Offshore Mechanics and Arctic Eng., 111, 1–11, 1989.
  • 27. O.C. Zienkiewicz, C.T. Chang, P. Bettess, Drained, undrained, consolidating and dynamic behaviour assumptions in soils, Geotechnique, 30, 4, 385–395, 1980.
  • 28. O.C. Zienkiewicz, A.H.C. Chan, M. Pastor, B.A. Schrefler, T. Shiomi, Computational Geomechanics with Special Reference to Earthquake Engineering, Wiley, Chichester/ New York/Weinheim/Brisbane/Singapore/Toronto, 1999.
  • 29. J. Zierep, Ahnlichkeitsgesetze und Modellregeln der Stromungslehre [in German], G. Braun, Karlsruhe, 1972 (Polish translation by W. Selerowicz, PWN, Warszawa, 1978).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7b4ae4a-1b00-4606-ace3-c8f46814fc6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.