Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Besides the Global Positioning System (GPS) and Globalnaya Navigatsionnaya SputnikovayaSistema (GLONASS), two additional global navigation satellite systems (GNSS) have reached full operational capability in recent years. The European Union, along with the European Space Agency, introduced the Galileo positioning system. China is developingthe BeiDou system. To fully utilize the capabilities of the new systems, dedicated precise models and corrections are necessary. An example of such corrections can be antenna phase center corrections (PCC). In the case of Galileo, access to phase center corrections may be challenging. This is because a lot of GNSS antenna types still have no corrections directly dedicated to Galileo signals. In such a case, corrections created based on GPS signals are recommended. The study compared the positions of stations, determined based on Galileo-only observations using type-mean and individual PCC models obtained from field and anechoic chamber calibration. Additionally, calculations were performed using elevation-only PCC based on the type-mean model. It was demonstrated that position shifts resulting from the use of individual PCC derived from an out-door calibration instead of individual calibration in an anechoic chamber (dedicated PCC set for Galileo signals) can reach up to 5 mm in the vertical component, whilefor horizontal components, these shifts are generally less than 2 mm.
Czasopismo
Rocznik
Tom
Strony
5--24
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- University of Warmia and Mazury, Faculty of Geoengineering, Department of Geodesy, Olsztyn
Bibliografia
- 1. Baire Q., Bruyninx C., Legrand J., Pottiaux E., Aerts W., Defraigne P., Bergeot N., Chevalier J.M. (2013). Influence of different GPS receiver antenna calibration models on geodetic positioning. GPS Solut., vol. 18, pp. 529–539. https://doi.10.1007/s10291-013-0349-1.
- 2. Bartolomé J., Maufroid X., Fernandez-Hernandez I., López-Salcedo J., Seco-Granados G. (2014). Overview of Galileo System. Springer, Dordrecht. https://doi.10.1007/978-94-007-1830-2_2.
- 3. Bilich A., Mader G. (2010). GNSS absolute antenna calibration at the National Geodetic Survey. In: Proceedings ION GNSS 2010, Institute of Navigation, Portland, Oregon, OR, 21–24 September 2010, pp. 1369–1377.
- 4. Dawidowicz K., Krzan G. (2016). Analysis of PCC model dependent periodic signals in GLONASS position time series using Lomb-Scargle periodogram. Acta Geodyn. Geomater., vol. 13, pp. 299–314. https://doi.10.13168/AGG.2016.0012.
- 5. Dawidowicz K., Rapiński J., Śmieja M., Wielgosz P., Kwaśniak D., Jarmołowski W., Grzegory T., Tomaszewski D., Janicka J., Gołaszewski P., et al. (2021). Preliminary Results of an Astri/UWM EGNSS Receiver Antenna Calibration Facility. Sensors, vol. 21, no. 4639. https://doi.org/10.3390/s21144639.
- 6. Görres B., Campbell J., Becker M., Siemes M. (2006). Absolute calibration of GPS antennas: laboratory results and comparison with field and robot techniques. GPS Solut., vol. 10, pp. 136–145. https://doi.org/10.1007/s10291-005-0015-3.
- 7. Hu Z., Zhao Q., Chen G., Wang G., Dai Z., Li T. (2015). First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University. Sensors, vol. 15, pp. 28717–28731. https://doi.org/10.3390/s151128717.
- 8. Krzan G., Dawidowicz K., Wielgosz P. (2020). Antenna phase center correction differences from robot and chamber calibrations: The case study LEIAR25. GPS Solut., vol. 24. https://doi.org/10.1007/s10291-020-0957-5.
- 9. Lyard F., Lefevre F., Letellier T., Francis O. (2006). Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, vol. 56, pp. 394–415. https://doi.10.1007/s10236-006-0086-x.
- 10. Pengfei C., Wei L., Jinzhong B., Hanjiang W., Yanhui C., Hua W. (2011). Performance of precise point positioning (PPP) based on uncombined dual-frequency GPS observables. Survey Rev., vol. 43, pp. 343–350. https://doi.org/10.1179/003962611X13055561708588.
- 11. Riddell A., Moore M., Hu G. (2015). Geoscience Australia's GNSS Antenna Calibration Facility: Initial Results. In Proceedings of the International Global Navigation Satellite Systems Society IGNSS Symposium, Gold Coast, Australia, 14–16 July 2015.
- 12. Schön S., Kersten T. (2013). On Adequate Comparison of Antenna Phase Center Variations. AGU Fall Meeting, 09-13 December, San Francisco, USA. Washington D.C. American Geophysical Union, 2013. https://doi.org/10.15488/4619.
- 13. Tupek A., Zrinjski M., Švaco M., Barković Đ. (2023). GNSS Receiver Antenna Absolute Field Calibration System Development: Testing and Preliminary Results. Remote Sens., vol. 15, no. 4622. https://doi.org/10.3390/rs15184622.
- 14. Wang N., Yuan Y., Li Z., Montenbruck O., Tan B. (2016). Determination of differential code biases with multi-GNSS observations. Journal of Geodesy, vol. 90, no. 3, pp. 209-228. https://doi.org/10.1007/s00190-015-0867-4.
- 15. Willi D., Lutz S., Brockmann E., Rothacher M. (2020). Absolute field calibration for multi-GNSS receiver antennas at ETH Zurich. GPS Solu., vol. 24, no. 28. https://doi.org/10.1007/s10291-019-0941-0.
- 16. Wübbena G., Menge F., Schmitz M., Seeber G., Volksen C. (2000). A New Approach for Field Calibration of Absolute Antenna Phase Centre Variations. Navig. J. Inst. Navig., vol. 44. https://doi.org/10.1002/j.2161-4296.1997.tb02346.x.
- 17. Zeimetz P., Kuhlmann H. (2008). On the Accuracy of Absolute GNSS Antenna Calibration and the Conception of a New Anechoic Chamber. In Proceedings of the FIG Working Week 2008, Stockholm, Sweden, 14–19 June.
- 18. Zhou F., Dong D., Li W., Jiang X., Wickert J., Schuh H. (2018). GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solut., vol. 22, no. 33. https://doi.org/10.1007/s10291-018-0699-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-263b77da-5089-4cea-b4ee-e9a40e0fb088