Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  surface damage
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article presents the results of the analysis of surface damage of abraded underwater concretes with the use of spatial scanning. The concrete abrasion test was carried out using the ASTM C1138 underwater method. Spatial scanning was used to prepare a map of wearing of the abraded surfaces of the specimens. This map enabled a better prognosis of the abrasion wear of the concrete, particularly in the context of designing hydrotechnic reinforced concretes.
PL
W artykule przedstawiono wyniki analizy uszkodzeń powierzchni ścieranych betonów podwodnych z zastosowaniem skanowania przestrzennego. Badanie ścieralności betonów wykonano metodą podwodną wg ASTM C1138. Skanowanie przestrzenne umożliwiło wykonanie mapy zużycia powierzchni ścieranych próbek, która pozwoliła na lepsze prognozowanie zużycia ściernego betonu, szczególnie w aspekcie projektowania betonów hydrotechnicznych ze zbrojeniem.
EN
Tungsten is a prime choice for armor material in future nuclear fusion devices. For the realization of fusion, it is necessary to address issues related to the plasma–armor interactions. In this work, several types of tungsten material were studied, i.e. tungsten prepared by spark plasma sintering (SPS) and by water stabilized plasma spraying (WSP) technique. An intended surface porosity was created in the samples to model hydrogen/ helium bubbles. The samples were subjected to a laser heat loading and a radiation loading of deuterium plasma to simulate edge plasma conditions of a nuclear fusion device (power density of 108 W/cm2 and 107 W/cm2, respectively, in the pulse intervals up to 200 ns). Thermally induced changes in the morphology and the damage to the studied surfaces are described. Possible consequences for the fusion device operation are pointed out.
EN
Comparative studies of the parameters both pure helium and helium-xenon plasma have been fulfilled in a magneto-plasma compressor (MPC). The current-voltage characteristics of MPC accelerating channel and the maximum plasma velocity of (6-8) x 106 cm/s changed negligibly under local xenon injection to compression zone. Nevertheless, the xenon addition causes a growth of maximal plasma pressure up to of 2.3 MPa, an increase of plasma radiation from the compression zone. The plasma density achieved 1018 cm.
EN
The Dense Plasma Focus (DPF) devices PF-1000, PF-6 and PF-5M working with different gases and in dissimilar irradiation modes were used to carry out experimental investigations of irradiation of a number of materials by powerful pulsed ion and high-temperature plasma streams. The materials under test were designed for application in structural and functional components of thermonuclear fusion devices with magnetic (MPC) and inertial (IPC) plasma confinement, as well as for working chambers of plasma and accelerator devices. The main features of the materials are low-activation and radiation-resistant properties. On the basis of the investigations a significant progress was achieved in understanding of dynamics of high-energy nano- and micro-second pulsed streams in DPF from one side as well as on the mechanisms of their influence upon materials under irradiation from the other one. We demonstrated that this approach can be useful for certain tests of plasma-facing materials (e.g. W for MPC and stainless steels for IPC) and of structural (construction) elements of the above-mentioned devices subjected to pulsed high-energy radiation streams. The results obtained suggest also that DPF devices can be used in new pulse technologies for material treatment by means of powerful nanosecond and microsecond pulses of plasma and ion streams.
EN
A review of results and new data on the interaction of pulsed ion and dense plasma beams with metals in different Dense Plasma Focus (DPF) devices are presented. Different irradiation conditions with microsecond pulses of the power density in the range of 105 109 W/cm2 were applied. The most interesting thermal and radiation effects observed in both surface and bulk of the material positioned at the cathode part of the DPF device have been considered. Advanced directions of DPF use for scientific and applied problems of radiation material science were determined.
EN
A review of results on the design and operation of the new efficient Dense Plasma Focus device PF-6 of medium size (transportable) having bank energy of ca. 7 kJ and possessing a long lifetime is presented. New data on the interaction of the pulsed fast ion beams and dense plasma streams generated at this apparatus with various materials are given. These results are compared with the analogous information received at the biggest facility PF-1000. It is shown that it is possible to have about the same power flux density (in the range of 105 109 W/cm2) in both devices however in different areas. Doses of soft X-rays produced by the device within the resists for the goals of microlithography and micromachining appear to be several times less that it is with the conventional X-ray tube. In biological application of this device, medium- and hard-energy X-rays are exploited in the field of radioenzymology. It was found that the necessary dose producing activation/inactivation of enzymes can be by several orders of magnitude lower if used at a high-power flux density in comparison with those received with isotope sources. In medicine, short-life isotope production for the goals of the positron emission tomography (medicine diagnostics) is possible by means of the fast ions generated within DPF. All these experiments are discussed in the framework of pulsed radiation physics and chemistry in its perfect sense thereto the criteria are formulated.
EN
The paper presents influence of mechanical surface damage on corrosion resistance of plates made of Cr-Ni-Mo stainless steel, used in funnel chest treatment. The surface of the steel was electrochemically polished and fitted. The surface damage is induced in the given deformation regions and is a potential reason of corrosion. The corrosion tests were realised by recording of anodic polarization curves with the use of the potentio-dynamic method. The VoltaLab® PGP 201 system for electrochemical tests was applied. Additionally, the tests showed that the structure of the steel the plates were made of, met the PN-ISO 5832-1 standard. On the basis of the obtained results it can be stated that that stainless steel can be applied in funnel chest treatment.
EN
The results of experimental investigations of powerful hydrogen plasma jets and fast ion beams interaction with various materials (austenitic chromium-manganese steels, pure vanadium, tungsten, graphite, copper, and their alloys: Cu-4 mass% Ni and Cu-10 mass% Ga) are presented. The materials were placed on the discharge axis of the PF-1000 device and irradiated with fluxes of fast ions (of energy in the range from tens keV up to several MeV) and with plasma streams (of power flux density q~(108 109) W/cm2). It was found that the fast ions and plasma streams caused different damages to the aforementioned materials. A diverse character of the damages to the individual investigated material was revealed. Some peculiarities of the process as well as the correlation between the surface density of the "macroscopic" structural defects (blisters and craters) and the fluence of the fast ions implanted in the specimen are discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.