Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  silnik o tłokach przeciwbieżnych
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article presents simulation strength calculations of a newly designed crankshaft for a PZL 100 engine with a reciprocating piston design. This engine is the subject of a research and development project co-financed by NCBR. The article presents four successive versions of the crankshaft geometric changes which underwent strength calculations. Such elements as the outer and inner parts of the crankshaft arm were changed in these geometric versions. The geometry of the shaft was changed using Catia v5 software, while strength calculations were carried out in Abaqus software. In summary, one of the presented models was selected for further work due to the possible simplification of the manufacturing process and the reduction of mass and stresses. This model was further investigated in the project.
EN
The paper presents possibilities of change working parameters of two-stroke diesel engine with opposed pistons. Obtaining of higher engine efficiency is realized by applying of Atkinson cycle. Modification of scavenging process by changing pistons' position connecting with two crankshafts enables asymmetrical scavenge timing. Decreasing of shorter time of closing exhaust ports before compression process and longer expansion process give higher engine work and with high charging ratio increases engine power. These types of engines are recently recommended for power plant stations. The paper includes full analysis of engine work with scavenge and combustion processes for different timing phases based on geometry of the CI Leyland L60 engine by using of CFD modelling and own 0D model. Simulation tests indicate a high scavenge efficiency, good penetration of injected fuel and fast combustion process. The work contains figures of pressure, temperature traces and emission of main chemical species in exhaust gases with comparison of engine works for different timing phases. Atkinson cycle in two-cycle work of engine and full combustion process enables to achieve high total efficiency. The study is an input for realization of such processes in a future of power plant engines with different fuelling systems.
EN
The paper presents an analysis of the constructions of oil pumps for an aircraft compression ignition engine. It is a two-stroke liquid-cooled engine with a power of 100 kW. The system has 3 cylinders and 6 opposed pistons. The paper estimates the required oil pump capacity to make the engine components well-lubricated. Next, automotive oil pumps for diesel engines are analyzed to select a correct pump for aircraft diesel engine applications. Three pump constructions of different constructions and dimensions of a rotor were select-ed. A measurement bench was designed and built to test these oil pumps in the range of pump shaft speeds from 0 to 4500 rpm and volumetric flow rate up to 150 l/min. The bench also enables stabilization of oil temperature at the required level within the range from 30 to 120oC. In addition, flow resistance through engine slide bearings was simulated by changing the position of a throttling valve at the pump output to regulate pressure in the range of 0-700 kPa. The obtained capacity characteristics of individual pumps versus on oil pressure and temperature allowed us to find an appropriate oil pump to make individual engine nodes well-lubricated.
4
EN
The article presents an analysis of the design of cooling liquid pumps for a compression-ignition aircraft engine. A 100 kW twin-charged, two-stroke, liquid-cooled engine has 3 cylinders and 6 opposed-pistons. In the first part of the study, the amount of heat needed to be removed by the cooling system was estimated to obtain the required volumetric flow rate. Then, the design of automotive cooling liquid pumps for compression-ignition engines with a Common Rail power supply system and power of about 100 kW was analyzed. The aim of the analysis was to select a suitable pump for applications in the aircraft compression-ignition engine. 5 constructions of different shape, diameter and width of the working rotor were selected. The pressure and volume flow rate were determined for a given rotational speed of the pump on a specially built stand. The operation maps of individual pumps were created to select the most efficient types of pumps.
EN
The paper presents the research results of the injector construction with the modified injection nozzle. The injector is designed for a prototype opposed-piston aircraft diesel engine. The measurements were based on the Mie scattering technique. The conditions of the experiment corresponded to maximum loads similar to those occurring at the start. The measuring point was selected in line with the analysis of engine operating conditions: combustion chamber pressure at the moment of fuel delivery (6 MPa) and fuel pressure in the injection rail (140 MPa). The analysis focused on the average spray range and distribution, taking into account the differences between holes in the nozzle. As a result of the conducted research, the fuel spray range was defined with the determined parameters of injection. The fuel spray ranges inside the constant volume chamber at specific injection pressures and in the chamber were examined, and the obtained results were used to verify and optimize the combustion process in the designed opposed-piston two-stroke engine.
PL
Moc i sprawność całkowita silników dwusuwowych jest silnie zależna od sprawności wymiany ładunku, dlatego też optymalizacja tego procesu jest krytyczna z punktu widzenia wydajności. Głównym celem tego artykułu jest pokazanie potencjału łączenia ze sobą różnych narzędzi inżynierskich w celu znacznego przyspieszenia fazy koncepcyjnej weryfikacji różnych systemów wymiany ładunku. Proponowany algorytm postępowania używa różnorakich języków programowania do łączenia komercyjnych (w tym przypadku Ansys Workbench, Siemens NX, MathWorks Matlab, Microsoft Excel) i niekomercyjnych pakietów (Cantera) by uzyskać najważniejsze informacje tak wcześnie jak jest to możliwe. Proponowane narzędzie obsługuje model 0-wymiarowy procesu spalania (z zadanym stężeniem gazów wylotowych), podziału geometrii i dyskretyzacji przestrzennej, zautomatyzowanego ustawiania programu obliczeniowego i postprocesora do danych numerycznych, przygotowanych specjalnie dla rozrządu sterowanego tłokami. Przeprowadzono prostą ocenę zaoszczędzonego czasu dzięki zaproponowanej metodzie postępowania. Ostania część jest krytycznym podsumowaniem zaproponowanej metody i wskazuje pewne ciekawe kierunki rozwoju takie jak kosymulacja z programami 1D oraz bardziej zaawansowane modelowanie spalania.
EN
The power and overall efficiency of two-stroke engines are strongly dependent by scavenging efficiency, thus optimization of this process is vital to performance. Main aim of this article is to show the potential of combining different engineering tools to substantially speed-up the conception verification phase of various scavenging systems. The suggested algorithm uses a variety of programming languages to interconnect commercial (in this case Ansys Workbench, Siemens NX, MathWorks Matlab, Microsoft Excel) and non-commercial packages (Cantera) to get the most important information as soon as possible. Presented tools cover 0-D combustion process model (with desired exhaust gases concentration), geometry division and meshing, automated solver-setting and numerical-data postprocessor, prepared especially for piston ported valves. A simple evaluation of time savings by using proposed method was conducted. Last part is a critical sum-up of presented method and pointing out some interesting directions of development, concerning co-simulation with 1D software and more sophisticated combustion modeling.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.