Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  orthorectification
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Bezzałogowe Statki Latające stanowią coraz bardziej popularną platformę nośną dla sensorów pozyskujących dane na potrzeby teledetekcji i fotogrametrii. Niski pułap lotu pozwala na pozyskanie danych o bardzo wysokiej rozdzielczości, w stosunkowo krótkim czasie. Dzięki temu możliwa jest realizacja wielkoskalowych opracowań mapowych. Jednak charakter pozyskiwanych danych oraz pułap pozyskiwania powodują szereg trudności w późniejszym opracowaniu zdjęć. Podstawowym problemem już na etapie wykonania nalotu jest orientacja zewnętrzna zdjęć, wstępnie pozyskiwana z systemów nawigacyjnych GPS/INS. Zazwyczaj stosowane jednoczęstotliwościowe odbiorniki GPS pozwalają (z dokładnością zaledwie kilku metrów) wyznaczyć przybliżone elementy orientacji zewnętrznej. Ponadto brak stabilizacji kamery powoduje, że pozyskane obrazy często cechują się stosunkowo dużymi wartościami kątów nachylenia podłużnego i poprzecznego. W artykule zaprezentowano kolejne etapy pozyskiwania oraz przetwarzania danych obrazowych, takie jak: aerotriangulacja, generowanie numerycznego modelu terenu, ortorektyfikacja oraz mozaikowanie. Do badań wykorzystano obrazy pozyskane kompaktową kamerą niemetryczną, zamontowaną na pokładzie płatowca napędzanego silnikiem elektrycznym. Obszar, dla którego pozyskano dane obejmuje tereny płaskie, rolnicze i zalesione. Zbadano dokładność aerotriangulacji, a także poprawność wygenerowanego numerycznego modelu terenu oraz ortomozaiki. Analiza i przetwarzanie danych realizowane były w oprogramowaniu INPHO UASMaster. Na podstawie przeprowadzonych badań dokładności aerotriangulacji, generowania numerycznego modelu terenu oraz ortorektyfikacji stwierdzono, że w celu osiągnięcia wysokiej dokładności aerotriangulacji oraz numerycznego modelu terenu wymagane jest m.in. zastosowane specjalnie zaprojektowanych sygnalizowanych znaków osnowy fotogrametrycznej.
EN
Unmanned Aerial Vehicles are more and more popular platforms for photogrammetry and remote sensing sensors. Low altitudes allow for a high resolution data acquisition in a relatively short period of time. It makes that an implementation of large-scale mapping studies is possible. On the other hand, type of acquisitioned data and low altitude cause a lot of troubles during processing of images. The main problem is low accuracy of an exterior orientation elements of images which are acquired from GPS/INS systems. Usually, single frequency GPS receivers are used which can determine approximate exterior orientation elements with an accuracy about a few meters. Furthermore, the lack of camera stabilization causes relatively large values of pitch and roll angles of images. In the paper, the stages of acquisition and processing of image data: aerotriangulation, a Digital Elevation Model generation, orthorectification and mosaicking process are presented. In the research, images from a non-metric compact camera mounted on an airframe was used. The airframe is driven by an electric motor. A region of research includes flat, agricultural and forested areas. Accuracies of the aerotriangulation process, orthomosaic and the correctness of the Digital Terrain Model generation were examined. The analysis and processing of the data were performed in INPHO UASMaster software. As a result it was found that in order to achieve a high accuracy of the aerotriangulation process and Digital Terrain Model, there is required to use specially designed signalized ground control points.
EN
TerraSAR-X is a German radar satellite, which was launched in June 2007. The satellite is equipped with a modern SAR system using the X band microwave radiation frequency and is capable of acquiring very high resolution SAR images independent of weather conditions and illumination. The paper presents the results of geometrical correction of high resolution TerraSAR-X images. The research was based on images acquired in HighResolution SpotLight mode in single polarisation HH with spatial resolution about 1 m. In orthorectification process the data supplied by the distributor in the SSC format was used. The results of orthorectification using various amount of ground control points was checked. The influence of the digital terrain model used in orthorectification process was also analysed. The last part of the work presents verification of geometric precision of geocoded product (EEC) generated by the distributor.
PL
TerraSAR-X jest niemieckim satelitą radarowym wyniesionym na orbitę w czerwcu 2007 roku. Satelita wyposażony jest w nowoczesny radar z syntetyzowaną aperturą (SAR), rejestrujący wysokorozdzielcze obrazy radarowe w paśmie X promieniowania mikrofalowego niezależnie od oświetlenia słonecznego i warunków atmosferycznych. W artykule przedstawiono wyniki korekcji geometrycznej wysokorozdzielczych obrazów radarowych TerraSAR-X. W badaniach wykorzystano zobrazowania zarejestrowane w trybie High Resolution SpotLight o rozdzielczości około 1 m, zarejestrowane w pojedynczej polaryzacji poziomej. Ortorektyfikację przeprowadzono na danych dostarczonych przez dystrybutora w formie zespolonej (SSC). Sprawdzono wyniki ortorektyfikacji przy wykorzystaniu różnej liczby punktów kontrolnych oraz przeanalizowano wpływ wykorzystanego w procesie ortorektyfikacji numerycznego modelu terenu. W przypadku obrazu dostarczonego przez dystrybutora w formie przetworzonej (EEC) zbadano jego dokładność geometryczną poprzez weryfikację współrzędnych fotopunktów pomierzonych na materiałach referencyjnych i obrazie TerraSAR-X.
PL
Mikrofalowy sensor satelity TerraSAR-X umożliwia pozyskanie całej gamy różnorodnych produktów mogących znaleźć zastosowanie w zarządzaniu kryzysowym, kartografii, hydrologii, rolnictwie, leśnictwie i geologii. Artykuł prezentuje wyniki analizy dokładności geometrycznej produktów z satelity TerraSAR-X o rozdzielczości około 4 metrów oraz 1 metr, jak również przedstawia dokładność wyników ortorektyfikacji obrazów SSC o metrowej rozdzielczości.
EN
TerraSAR-X, a German satellite, works in three modes: SpotLight (SL), StripMap (SM), and ScanSAR (SS) with maximum azimuth resolutions of 1, 3, and 16 m, respectively. The images are distributed both in raw a raw or a georeferenced format. Due to the variety of products, it has been claimed that the geometry of those images should be investigated. The first part of the paper presents verification of geometric precision of geocoded products generated by the distributor. Images at the EEC (Enhanced Ellipsoid Corrected) and GEC (Geocoded Ellipsoid Corrected) levels were examined. The EEC product affected by the terrain heights, while the GEC product is affected by the mean height of terrain. Two test areas were selected: one in Kozienice, with SM mode images and the other in Wroclaw, with SL images. Control points were collected on reference orthophotomaps from the IRS-P6 satellite and with an ADS-40 airborne digital camera. The results showed the GEC product to have a low accuracy, while the EEC products are of a high accuracy (RMS error of 3-4 pixels). The second part of the paper presents orthorectification results for the Wroclaw test area.A raw image in the SSC format was used. It was shown that, with 10 control points and a SAR model correction both in azimuth and slant range direction, the accuracy of 2 pixels can be achieved. Verification of TerraSAR-X geometry accuracy formed a part of a project carried out in cooperation with the Geosystems Polska, the distributor of TerraSAR-X images from Poland. All the work was conducted in the ErdasImagine environment.
EN
In last years, accurate spatial data from high resolution satenite images are getting more and more frequently used for modelling topography and other surveying purposes. To extract accurate spatial information, a sensor's mathematical models are needed. Those models classified to two branches: rigorous (parametrical or physical) models and non-rigorous models. In the paper a dynamic sensor model is proposed to extract spatial information from geo-rectified images named the geo-images which their geometry at the time of imaging have been lost. The developed model has been reconstrueted basing on a transformation of central perspective projection into a parallel one.
PL
Wysokorozdzielcze obrazy satelitarne coraz częściej są stosowane w praktyce dla celów topograficznych i innych prac geodezyjnych. Ze względu na brak dostatecznych informacji o geometrii sensora i danych efemeryd orbitalnych, ścisły model sensora oparty na fizycznym mechanizmie, używany do dokładnego tworzenia orthofotomapy, generowania DEM/DTM i innych celów, jest kłopotliwy do rekonstrukcji. Jednak, dystrybutorzy wysokorozdzielczych obrazów satelitarnych zazwyczaj dostarczają użytkownikom nie surowe lecz przetworzone obrazy zwane Geo-obrazami (geo-rectified image or geo-images), które zostały rzutowane na pewnej płaszczyźnie o stałej wysokości względem przyjętej elipsoidy. Model sensora dla Geo-obrazów musi być zmodyfikowany w odniesieniu do ścisłego (fizycznego) modelu. Niniejsza praca autora przedstawia dynamiczny model sensora dla Geo-obrazów, który został utworzony przy użyciu ścisłego warunku kolinearności z wykorzystaniem teorii rzutu równoległego.
PL
W artykule zaprezentowano wyniki badan naukowych mających na celu określenie zakresu wykorzystania wysokorozdzielczych danych satelitarnych Resurs-DK w procesie generowania podstawowych produktów fotogrametrycznych. Na podstawie analizy metadanych tego systemu opracowano warsztat metodyczny korekcji geometrycznej oraz ortorektyfikacji. Podstawa tego warsztatu były algorytmy korekcji geometrycznej danych Resurs-DK wzorowane na modułach korekcji wysokorozdzielczych obrazów satelitarnych IKONOS oraz QuickBird funkcjonujących w oprogramowaniu fotogrametrycznym Ortho Engine PCI Geomatica. Zaprezentowano rezultaty korekcji geometrycznej obrazów panchromatycznych Resurs-DK z wykorzystaniem ścisłego modelu parametrycznego, modelu wielomianowego oraz wyznaczonych i skorygowanych współczynników wzorowanych na RPC. Na podstawie wnikliwej analizy poszczególnych wariantów korekcji geometrycznej stwierdzono, że wysokorozdzielcze zobrazowania Resurs-DK można skorygować geometrycznie na poziomie poniżej ½ piksela obrazu źródłowego. W niniejszym artykule zamieszczono również analizy wpływu dokładności wyznaczenia elementów orientacji zewnętrznej scen Resurs-DK na dokładność położenia pikseli w matrycy wygenerowanego ortoobrazu. Scharakteryzowano uwarunkowania procesu ortorektyfikacji rosyjskich zobrazowan Resurs-DK. Stwierdzono, że do wygenerowania ortoobrazów spełniajacych kryterium dokładności geometrycznej mapy topograficznej w skali 1:10000 należy włączyc zbiór punktów wysokościowych NMT o dokładności nie gorszej ni mH = 4m. Stwierdzono, że na podstawie zobrazowań nadirowych Resurs-DK można wygenerować ortoobrazy, których dokładność geometryczna odpowiada dokładności mapy topograficznej w skalach 1:5000, 1:10000 oraz skalach mniejszych. Jakkolwiek dla tego przedziału skalowego ortoobrazów spełnione jest kryterium dokładności geometrycznej, to ich zdolność interpretacyjna dotyczy jedynie skali 1:10 000.
EN
The present paper presents the results of the research aimed at the qualification of the range of utilisation of very high resolution Resurs-DK satellite data in the process of generating basic photogrammetric products. The methodology for geometrical correction and orthorectification of the source Resurs-DK panchromatic images based on the metadata analysis was elaborated. The algorithms for geometrical correction of the Resurs-DK image data, based on the correction modules for IKONOS and Quick Bird satellite data functioning in photogrammetric commercial software Ortho Engine PCI Geomatica, were the critical for that methodology. Four variants of geometrical correction were applied. The results of the geometrical correction of the panchromatic scenes Resurs- DK, based on the parametrical sensor model adapted to the structure of Russian data and rational polynomial coefficients, which were identified based on the control point measurement, were presented. The analysis of the influence of the number and distribution of the control points throughout the scene on the result of geometric correction have been realised in each variant. With a thorough analysis of the individual variants of geometrical correction, that very high resolution Russian satellite data can be corrected with the accuracy level below half pixel of the source image. In the present paper, in addition to the profile of the methodology for geometrical correction of Resurs- DK satellite data, an analysis was presented relating to the influence of the accuracy of delimitation of external orientation Resurs-DK images on the accuracy location of the pixels in the orthoimage matrix. Technical conditions were qualified for the orthorectification process of new very high resolution Russian images. It was found that, for orthoimage generating meeting the accuracy criterion of topographic map scaled 1:10000, there should be a set of height points included, having digital elevation model with accuracy at least 4 m. I was proven that, based on the Resurs-DK satellite data, the orthoimages can be generated whose geometrical accuracy corresponds to the accuracy of the topographical map scaled 1:5000 and 1:10,000 and smaller. However, for that scale range of orthoimages, the geometrical accuracy criterion is met, yet their interpreting capability applies only to the 1:10000 scale.
EN
Today, the new era with Very High Resolution Satellite (VHRS) imageries as IKONOS, QuickBird, EROS, OrbView etc., provides orthophoto in large scale of 1:5 000, to update existing maps, to compile general-purpose or thematic maps. Orthophotomap in the scale of 1:5 000 with Ground Sampling Distance of 0.5 m is one of three important sources for establishing GIS together with a Digital Elevation Model of + 1.0 m aecuraey in height and a topographic map in the scale of I: 10 000. Therefore, the accuracy of products of VHRS imageries affects reliability of GIS. Nevertheless, the accuracy of products of processing VHRS imageries is at first dependent on chosen geometric al sensor models. The understanding of geometrical sensor models of VHRS imageries is very important for improving processing of VHRS imageries. The polynomial models are to provide a simple, generic set of equations to represent the indirect relationship between the ground and its image. The polynomial models or replacement sensor models must not only model the ground-to-image relationship accurately. Physical (or parametrical) model describes directly strict geometric al relations between the terrain and its image, using satellite's orbital parameters and basing on the co-linearity condition. In such model, the above-mentioned multi-source distorting factors are taken into consideration. In this paper a review of practical accuracy of geometrical models of VHRS imageries taken from different research institutions in the world in last years has been presented.
PL
Matematyczny opis zależności pomiędzy zdjęciem i terenem odgrywa ważną rolę w opracowaniu fotogrametrycznym, zwłaszcza dla wysokorozdzielczych obrazów satelitarnych. Obecnie, opracowanie wysokorozdzielczych obrazów satelitarnych dla tworzenia ortofotomap, generowania DEM/DTM jest zagadnieniem najczęściej opisywanym w literaturze. Budowa modeli sensora jest podstawą dla przetwarzania wysokorozdzielczych obrazów satelitarnych. W ostatnich latach, prace badawcze w wielu ośrodkach na świecie koncentrowały się na budowie modeli sensora. Modele sensorów mogą być podzielone na dwie grupy: wielomianowe (lub zastępcze) i parametryczne (lub fizyczne). Modele wielomianowe opisują pośrednią zależność pomiędzy terenem i obrazem bez potrzeby znajomości parametrów orbity. Modele parametryczne opisują zaś bezpośrednią zależność pomiędzy terenem i obrazem przy użyciu parametrów orbity satelity. W niniejszej pracy przedstawiono przegląd praktycznych dokładności modeli wysokorozdzielczych obrazów, zbadanych w ciągu ostatnich lat w różnych ośrodkach naukowo-badawczych
PL
Celem prezentowanej pracy było ustalenie wpływu rodzaju modelu terenu na jakość ortorektyfikacji wysokorozdzielczych obrazów satelitarnych IKONOS-2. Przedmiotem ortorektyfikacji były dwie sceny satelitarne IKONOS-2 pozyskane w dniu 25.06.2005 r. Dwa z wykorzystanych modeli wysokościowych opracowano na podstawie stereoskopowych zdjęć lotniczych w skalach odpowiednio: 1:13 000 i 1:26 000. Trzeci model powstał na drodze wektoryzacji warstwic z map topograficznych 1:50 000. Wszystkie modele miały postać regularnej siatki o bokach, odpowiednio: 15 m, 20 m oraz 30 m. W procesie ortorektyfikacji użyto oprogramowania OrthoWarp ER (Inpho Technology). Do ortorektyfikacji użyto tych samych GCP dla wszystkich modeli dla kanału PAN, sceny wschodniej (16 GCP) i zachodniej (15 GCP). Błąd średni kwadratowy (RMS) lokalizacji współrzędnych XY oscylował w przypadku obrazu ORTO_15 poniżej 2.0 m (dla sceny West: 1.75 m; East: 2.16 m). Kolejne testowane NMT (20_DEM oraz 30_DEM) spowodowały nieznaczne pogorszenie dokładności lokalizacji, co przejawiło się wzrostem wartości RMS do 2.37 m w obydwu wypadkach. Scena wschodnia o mniejszym odchyleniu kątowym od nadiru (8.1) niż zachodnia (13.1) wykazywała nieznacznie większy błąd (około 0.41 m dla ORTO_15 oraz 0.26 m dla ORTO_30). Przetworzone do postaci ortoobrazów sceny IKONOS-2 całkowicie spełniły oczekiwania projektu jako podkład do kartowania roślinności w każdym z analizowanych przypadków stosowania różnych NMT.
EN
The aim of the study was to define the influence of different types of Digital Elevation Models (DEMs) on the quality of the orthorectification process of very high resolution satellite (VHRS) IKONOS-2 images used in the “Mapping of the vegetation of the City of Cracow”. project The subject of the orthorectification were two satellite scenes (west and east of Cracow) of IKONOS-2 obtained on 25/06/2005. For the needs of orthorectification, three different digital elevation models were used. Two of them were made based on stereoscopic air-borne photographs on the respective scales of 1:13 000 and 1:26 000. They were prepared to generate air-borne orthophotomaps. The third model was made by digitizing contour lines from 1:50 000 topographical maps. All the models came to formed a regular grid with the sides: 15 m (15_DEM), 20 m (20_DEM) and 30 m (30_DEM), respectively. Data from the IKONOS-2 scanner was delivered on the processing level of a Standard Geometrically Corrected type (known as Geo-Ortho ready) with the application of the Cubic Convolution (WGS84, UTM34N; PAN 0.8 m; MS 3.2 m) interpolation method. The accuracy (RMS XY) of the obtained raw data was about 12.4 m for scene west and 9.5 m for east scene (max. 34 metres for the summit of the Marshall Piłsudski Mound). In the process of the orthorectification, OrthoWarp ER (Inpho Technology) software was used. The same GCP for all models for the PAN band for the eastern (16 GCP) and western (15 GCP) scenes were used in the orthorectification process. The mean square error (RMS) of the location of co-ordinates XY was in ORTO_15 (based on the 15_DEM) result image below 2.0 metres (for scene west – 1.75 m; east – 2.16 m). Subsequently tested 20_DEM and 30_DEM caused slight deterioration of the location accuracy, when RMS grew to 2.37 m in both cases. The eastern scene of smaller angular declination of a scanner from the nadir (8.1°) than the western one (13.1°) showed slightly greater bias (additionally about 0.41 m for ORTO_15 and 0.26 m for ORTO_30). Processed into the form of orthoimages, the VHRS IKONOS-2 scenes fully met the expectations of the project as a basis for mapping the vegetation in each of the analysed cases of the application of different DEM. The comparison of the application of different types of digital elevation models of different characteristics in the process of generating satellite orthoimages confirmed the usefulness of the application of already publicly available DEM.
PL
Praca miała na celu kompleksowe przebadane stereopary Ikonos dla celów automatycznej generacji modeli wysokościowych. Wykorzystano stereoparę przedstawiającą miasto Kraków i okolice; pracowano na oprogramowaniu Leica Photogrammetry Suit. Panchromatyczna stereopara o rozmiarze 11×22 kilometry posiadała terenowy wymiar piksela 0.80 m. Do orientacji stereopary wykorzystano dostarczone przez dystrybutora współczynniki RPC oraz naturalne fotopunkty pomierzone w technologii GPS. Analiza korekcji współczynników RPC wielomianami stopnia pierwszego, drugiego i trzeciego wykazała, że dla osiągnięcia dokładności subpikselowych wystarczający jest wielomian pierwszego stopnia. Osiągnięto następujące dokładność orientacji na 15 fotopunktach: Mx = 0.6 m; My = 0.4 m; Mz = 0.6 m; natomiast na 14 punktach kontrolnych: Mx = 0.6 m; My = 0.4 m; Mz = 0.8 m. Wykazano, że stosowanie większej ilości fotopunktów niż 9 nie prowadzi do znaczącej poprawy wyników orientacji a wykorzystanie wielomianów korygujących wyższych stopni może prowadzić do zniekształceń. W celu stworzenia NMPT wykonano automatyczną korelację (matching) w siatce 10 m. Analizę dokładności przeprowadzono na 46 punktach GPS i otrzymano średni błąd kwadratowy wysokości Mz = 1.6 m. Na potrzeby wygenerowania NMT przeprowadzono korelację w siatce 50 m, która pozwoliła na stworzenie NMT o dokładności Mz = 1.7 m. Na podstawie NMT przeprowadzono ortorektyfikację jednego z obrazów stereopary i stworzono ortofotomapę o pikselu 0.80 m. Dokładność sprawdzono na 24 fotopunktach GPS i otrzymano błędy: Mx = 0.93 m; My = 0.99 m. Eksperyment został przeprowadzony w Instytucie Fotogrametrii i Teledetekcji Politechniki Wiedeńskiej oraz w Instytucie Fotogrametrii i Kartografii Politechniki Warszawskiej.
EN
The main goal of the study was to investigate the potential of height model generation from very high resolution satellite images in Leica Photogrammetry Suite. The work was conducted at the Institute of Photogrammetry and Remote Sensing of the Vienna University of Technology and at the Institute of Photogrammetry and Cartography of the Warsaw University of Technology. The experiment was based on an Ikonos panchromatic stereo image with a resolution of 0.80 m and the size of 11×22 km. Orientation was done with RPC coefficients delivered by the distributor and photopoints measured in GPS technology. An analysis of RPC’s systematic errors correction using first, second and third order polynomials showed that for subpixel quality, a first order polynomial is sufficient. The achieved orientation accuracy was: on 15 control points – RMSx = 0.6 m; RMSy = 0.4 m; RMSz = 0.6 m, on 14 check points – RMSx = 0.6 m; RMSy = 0.4 m; RMSz = 0.8 m. It was shown that during work on the Polish normal heights system, if a polynomial of at least 1 order is not used, the results could be slightly degraded compared to work on an ellipsoid height system. Using more than 9 control points brings only slightly improvement to the stereo image’s orientation accuracy. RPC correction with polynomials of higher orders than the first is not advised, especially if a dense grid of control points is not assured. In order to generate DSM, matching was done which resulted in over 900 000 points. Accuracy analyses was done on 46 GPS points and gave the result of RMSz = 1.6 m. Points were placed mainly on roads, so this kind of analysis is reliable only for ground objects. For DTM generation, matching was done on a 50 m grid and manual filtration in LPS was conducted, which resulted in an accuracy of 1.7 m. The generated DTM and one of the images was used in orthorectification. Accuracy assessment of the generated ortho was done on 24 GPS points and gave the following results: RMSx = 0.93 m; RMSy = 0.99 m. In the experiment, the use of SCOP++ software for matched points filtration was investigated.The study was based on a dense 3 m grid point cloud. Although designed for laser scanning data, a robust filtering algorithm gave good results, even in the highly urban areas of Cracow.
PL
Autorzy artykułu, poszukując alternatywnych dla zdjęć lotniczych źródeł danych obrazowych, określili stopień przydatności panchromatycznych zobrazowań QuickBird w procesie generowania true ortho. W badaniach metodycznych wykorzystano sceny pozyskane przy różnych kątach wychylenia sensora satelity od nadiru, obejmujące swym zasięgiem centrum Warszawy. Elementy orientacji zewnętrznej poszczególnych scen wyznaczono z dokładnością na poziomie ½ piksela obrazu źródłowego. Do procesu ortorektyfikacji panchromatycznych obrazów QuickBird włączono zbiór punktów zapisanych w regularnej siatce o oczku 20 m, których dokładność położenia wysokościowego wynosiła 0.6 m. Podstawowy materiał badawczy stanowiły ortoobrazy wygenerowane z pikselem 1m, przy kątach wychylenia sensora satelity od nadiru wynoszących 5°, 11° oraz 18°. Stwierdzono, że dokładność ortoobrazów wygenerowanych na podstawie tak skonfigurowanych danych wejściowych nie zależy zasadniczo od kąta wychylenia sensora satelity i wynosi m P = 0.56 m. Główny etap badań dotyczył określenia wpływu wychylenia sensora obrazującego satelity na dokładność odwzorowania na ortofotomapie przestrzennych obiektów terenowych. Na podstawie porównania na ortoobrazach oraz mapie numerycznej w skali 1:10 000 wartości współrzędnych płaskich, odwzorowanych obiektów terenowych o wysokości nie przekraczającej 30 m, stwierdzono, że względny błąd średni położenia tych obiektów nie przekracza m P = 2.4 m, w przypadku, gdy sensor obrazujący systemu QuickBird jest wychylony od nadiru nie więcej niż 5°. Wykazano, że wartość tego błędu wzrasta do m P = 5.8 m przy wzroście kąta wychylenia sensora do 11° oraz do m P = 9.7 m przy kącie wychylenia sensora wynoszącym 18°. Stwierdzono, że ortofotomapy w skali 1:10 000, wygenerowane z panchromatycznych scen QuickBird, pozyskanych przy wychyleniu sensora nie większym od 5°, stanowią dla większości obiektów terenowych produkt true ortho.
EN
Alternative satellite data were studied for use in the generation of a true ortho of urban areas. The methodology of the generation of true ortho was elaborated using QuickBird Pan data of the Warsaw area. QuickBird data with different angle of acquisition was tested. The orientation of the scenes was done using RPC data and an additional 9 GCPs and Toutin’s model. The accuracy of the orientation of each scene was checked on 64 independent check points (ICPs). The accuracy on GCPs was less than 0.5 pixel of orientation of the QuickBird Pan data. RMSE on ICPs was less then 0.45 m. Orthorectification of the scenes was performed with the use of a DEM with a 20×20 m grid and RMSE (Z) < 0.6 m. RMSE (XY) = 0.56 m was achieved on the generated orthophotomaps with an output pixel size of 1×1 m for different collection angles of the image data. The main investigation was done for assessment of the planimetric accuracy of high buildings on the generated orthophotomaps. Digital topographic maps on a scale of 1:10 000 were used for planimetric accuracy assessment. RMSE (XY) < 2.4m for the acquisition angle less then 5° from nadir was achieved. The acquisition angle was 11° from nadir RMSE (XY) = 5.8 m and for 18° RMSE (XY) = 9.7 m . These results have been achieved only for spatial structures less than 30 m high. Panchromatic QuickBird data acquired close to the nadir angle could be used for elaborating the “true ortho” of an urban area.
10
Content available remote Ocena potencjału geometrycznego zdjęć IKONOS i QuickBird
EN
Commercial VHRS images of earth surface more and more frequently replace and supplement aerial photographs. Both the interest in these images and the scope of their use are on the rise. While principles and geometry of creation of orthophoto maps based on aerial photos are well known, the possibilities of their creation with the use of VHR are still at the stage of research. Such research is carried out by various scientific and research centers, among others a research project of the Ministry of Scientific Research and Information Technology conducted at the Warsaw Technical University and completed in 2005. Results of this project are presented in this paper, covering the comparison of accuracy of orthorectification processes of IKONOS and QuickBird images and the description of basic differences between the geometry of aerial photos and satellite images of the VHRS type. Two test fields have been selected for this project (Warsaw as flat area representing built-up terrain and Nowy Targ representing foothills terrain). For these test fields, images from IKONOS and Quick- Bird were ordered. On the VHRS images of each test field area, 30.50 GCPs were designated and then measured with GPS in planimetric accuracy of 10 cm. For creation of orthophoto maps available DTM models were used featured with various accuracy (Level 0, Level 1, Level 2 and SRTM). Orthorectification process was performed with the aid of generally available commercial software PCI Geomatica In the orthorectification process the accuracy of the following elements was investigated: correction methods, distribution, designation of GCP, different type of DEM used and the influence of significant off nadir angle on the final accuracy of orthophoto maps. The research conducted allowed to formulate principles of creating orthophoto maps with the use of satellite photogrammetry. The results obtained allow to promote VHRS images for wide use for purposes of GIS, cartography and various thematic analyses of the earth surface.
EN
Since 2000 when first imageries of Space Imaging of one metre resolution satellite products appeared on the World market, many institutions started using them for eartographie production such as orthophotomaps on a large scale. A choice of the mathematic sensor models of imageries for their orthorectification in producing orthophotomaps is one of the main investigation directions. In order to restitute the functional relation between imageries and their ground space, the use of sensor models is required. They can be grouped into two classes, the generalized sensor models (geometric or replacement sensor models) and physical or pararnetric models. The paper presents a brief overview of the geometric models such as RPC (Rational Polynomial Coefficients). Their properties, and in particular their advantages and disadvantages are discussed. Also the parametric models, developed by the authors are presented in this paper. They are based on time-dependent collinearity equation of the mathematic relation between ground space and its imageries through parameters describing the sensor position in satellite orbit and position of the orbit in the geocentric system.
PL
Rok 2000, w którym pierwszy obraz o metrowej rozdzielczości dostarczony przez satelitę Ikonos z Space Imaging zelektryzował światowe rynki komercyjne i ośrodki badawcze, można uważać za początek nowej ery technik obrazów satelitarnych. Jednym z głównych kierunków badań prowadzonych w zakresie praktycznego wykorzystania zobrazowań VHRS (Very High Resolution Satellite) jest optymalizacja modelu matematycznego obrazu dla jego korekcji geometrycznej i wytworzenia dokładnej ortofotomapy. Sprowadza się to do ustalenia poprawnych matematycznych zależności pomiędzy współrzędnymi zobrazowania i ich odpowiednikami w terenie. Rozróżnia się dwie zasadnicze grupy modeli. Pierwsza dotyczy zastępczej postaci modelu kamery - RPC (Rational Polynomial Coefficients), druga zaś uwzględnia fizyczne parametry kamery (skanera). W artykule opisana jest koncepcja budowy modelu geometrycznego opartego na współczynnikach RPC. Są w nim przedstawione zasadnicze zalety i niedostatki wynikające ze stosowania tego modelu w praktyce ortorektyfikacji VHRS. W dalszej kolejności opisany jest model parametryczny, stworzony przez autorów. Na bazie fundamentalnego warunku kolinearności wektora terenowego punktu i odpowiadającego mu wektora obrazowego, przy pomocy kolejnej transformacji ustalono relacje między położeniem punktu w układzie terenowym, a jego obrazem tworzonym przez poruszający się (dynamiczny) skaner satelitarny, o ciągle zmiennym w czasie położeniu w przestrzeni.
PL
Komercyjne zobrazowania satelitarne o bardzo dużej rozdzielczości (nazywane w literaturze angielskojęzycznej VHR -Very High Resolution ) coraz powszechniej zastępują zdjęcia powierzchni Ziemi wykonywane tradycyjnymi metodami z pułapu lotniczego. O ile problematyka generowania ortofotomap ze zdjęć lotniczych jest powszechnie znana w środowisku fotogrametrycznym, to możliwości tworzenia tego produktu na bazie VHR wciąż są przedmiotem badań i czekają na odpowiedzi na liczne pytania. Jakie dokładności są możliwe do uzyskania przy tworzeniu ortofotomapy przy zastosowaniu różnorakiej metodyki korekcyjnej, jaki użyć typ oprogramowania, jaki jest wpływ liczby użytych fotopunktów do procesu rektyfikacji, jak jest wpływ samego DTM? Aby uzyskać odpowiedz na te pytania wykonano szereg testów. Do przeprowadzenia eksperymentu wybrano dwa pola testowe: obszar płaski odpowiadający terenowi zabudowanemu – Warszawa i podgórza – Nowy Targ. Zostały użyte obrazy z trzech platform: IKONOS, QuickBird i EROS. Przy pomocy techniki GPS zostały pomierzone współrzędne punktów terenowych, uprzednio wyznaczonych na zobrazowaniach dla każdego pola testowego w liczbie 30-90 (GCP). Do generowania ortofotomap wykorzystywano powszechnie dostępny w kraju DTM (DTED Level 2) jak i przebadano wpływ dokładności DTM. Sam proces ortorektyfikacji był realizowany z pomocą powszechnie dostępnych oprogramowań komercyjnych: PCI Geomatica 9 i ERDAS, przy użyciu dwóch metod: nieparametrycznej RPC (iloraz wielomianowy) i ścisłej, bazującej na warunku kolinearności i znanym modelu kamery. W wyniku przeprowadzonych badań uzyskano ocenę dokładności generowania ortofotomap dla różnorakich scenariuszy technologicznych. Otrzymane wyniki zaprezentowane w referacie pozwalają wybrać optymalne warunki tworzenia ortofotomap w zależności od potrzeb użytkownika i wymaganych aplikacji wykorzystujących VHR typu IKONOS, QuickBird i EROS.
PL
Wysokorozdzielcze obrazy satelitarne są stosunkowo nowym źródłem danych fotogrametrycznych a możliwości ich wykorzystania dla różnorakich zadań w kraju nadal rozważane. Ortorektyfikacja takich obrazów jest najbardziej naturalnym sposobem przygotowania ich do potrzeb pomiarowych. Opanowanie technik i metodyki pozwalającej w sposób produkcyjny uzyskiwać wysokiej jakości ortoobrazy satelitarne jest podstawowym warunkiem powszechnego stosowania VHRS. System Ikonos jest wskazywany jako dający najlepsze wyniki ortorektyfikacji w tym segmencie. Jednym z programów umożliwiających jej wykonywanie jest PCI Geomatica. Zostaną tu w sposób ekspery,entalny porównane wyniki ortorektyfikacji obrazu Ikonos otrzymywane za pomocą tego programu. Przedstawione tu zestawienie ma na celu pomóc w wyborze odpowiedniej liczby fotopunktów i metody ortorektyfikacji
EN
Geomatica 9 is the latest version of PCI Geomatics geospatial image processing software product. It is particularly significant because it brings together into one integrated system advanced tools for remote sensing, photogrammetry, cartography and GIS. This merging of image processing and GIS within a single environment is one of PCI Geomatics key philoso-phies. This paper focuses mainly on the capabilities of Geomatica for orthorectifying very high resolution (VHR) satellite imagery. Orthorectified VHR satellite imagery is proving significant in the areas of cadastral mapping, agricultural, forestry and urban monitoring. VHR imagery would include products from the IKONOS, Quick Bird, EROS and SPOT-5 satellites. Based on rigorous parametric satellite models developed by Dr Thierry Toutin of the Canada Centre for Remote Sensing, Geomatica supports all the commercial VHR sensors. Rigorous sensor models offer the highest theoretical accuracy when orthorectifying imagery. The Rational Polynomial Coefficient (RPC) method of orthorectification is also supported by Geomatica and considered in the paper. Including the latest modification to the RPC model released by Space Imaging for their IKONOS imagery. Geomatica 9 supports block bundle adjustment of satellite imagery. In the way that block bundle adjustment reduces the number of Ground Control Points required to orthorectify a block of aerial photographs, the same concept is applied within Geomatica to reduce the time and cost required to map large areas. From sensors such as QuickBird and IKONOS, both panchromatic and multispectral imagery taken over the same area is available. A method of performing data fusion on these data within Geomatica is considered which preserves the original colour and detail of the input imagery.
PL
„Geomatica 9” kanadyjskiego producenta „PCI Geomatics” jest najnowszą wersją oprogramowania do geoprzestrzennego przetwarzania obrazów, zintegrowanego w jeden system zaawansowanych narzędzi na potrzeby kartografii, fotogrametrii, teledetekcji i GIS. Połączenie narzędzi związanych z przetwarzaniem obrazów i GIS w jedno środowisko jest jednym z punktów strategii rozwoju produktów PCI Geomatics. W niniejszym artykule autorzy skupiają się głównie na możliwościach wykorzystania „Geomatica 9” do ortorektyfikacji wysokorozdzielczych zobrazowań satelitarnych. Produkty przetwarzania mogą być wykorzystywane w katastrze, rolnictwie, leśnictwie czy monitoringu terenów zurbanizowanych. Zobrazowania te obejmują produkty z różnych satelitów takich jak IKONOS, QuickBird, EROS czy SPOT5. Bazując na dokładnych algorytmach wyznaczania parametrów orbit satelitów rozwiniętych przez Dr Thierry Toutin z Kanadyjskiego Centrum Teledetekcji, Geomatica pozwala na użycie danych z wszystkich komercyjnych wysokorozdzielczych sensorów. Dokładna znajomość parametrów pozwala na uzyskanie wysokiej dokładności dla ortorektyfikowanych zobrazowań. W artykule omówiono metodę ortorektyfikacji – RPC wykorzystywaną przez Geomatica, włączając jej ostatnie modyfikacje dokonane przez „Space Imaging” dla zobrazowań satelity IKONOS. Dla zobrazowań satelitarnych „Geomatica” wykorzystuje wyrównanie metodą niezależnych wiązek, która pozwala zredukować liczbę niezbędnych fotopunktów potrzebnych do ortorektyfi-kacji bloku zdjęć. Ta sama koncepcja jest zastosowana w Geomatica w celu redukcji czasu i kosztów kartowania dużych obszarów opracowania. Zobrazowania z QuickBird i IKONOS są dostępne zarówno jako panchromatyczne jak i wielospektralne (kolorowe). Metoda fuzji (wyostrzania) tych samych danych, jest w Geomatica wykonywana z zachowaniem oryginalnych kolorów i szczegółów zobrazowań wejściowych.
16
Content available Evaluation of panchromatic IKONOS data for mapping
EN
The results of assessment of the planimetric accuracy of 1-meter resolution panchromatic IKONOS data comparing to the topographic map in the scale 1:10,000 are presented. Low precision georeferenced Car terra Geo, 50 m CE90 product of test areas in China was orthorectified in IGiK using Image Station INTERGRAPH and InternationaI Imaging System PRISM VISTA software as well as software elaborated in Chinese Academy of Surveying and Mapping (CASM). Planimetric accuracy of IKONOS data after adjustment with the use of 5 GCP's (taken from the topomap) was: RMSEx = +/- 1.1m and RMSEy = +/- 1.4m. Planimetric accuracy calculated on 18 check points, the X, Y coordinates of which have been also taken from the topomap was: RMSEx = +/-3.5m and RMSEy= +/- 2.5 m. Planimetric accuracy of the orthophotomap generated using IKONOS data and calculated transformation parameters was: RMSEx = +/- 3.7 m and RMSEy = +/- 3.6 m. This accuracy is similar to the planimetric accuracy of the topographic map in the scale 1:10 000. Better accuracy can be achieved by measuring GCP's directly in the field with GPS technique instead of using topomaps. Nevertheless, Сarterra Geo product which is of the lowest horizontal precision out of the entire range of IKONOS products and also the cheapest, can be used for updating topomaps as well as for generating up-to-date digital basemap in modern Geographic Information Systems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.