Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  czas propagacji
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono wyniki analizy zmian częstotliwości oscylatora pierścieniowego, uzyskane poprzez zmianę miejsca lokowania pojedynczych bramek w różnych częściach struktury reprogramowalnej. Przeprowadzono symulacje komputerowe oraz wykonano badania eksperymentalne układu oscylatora pierścieniowego złożonego z N inwerterów, dla kilku wariantów rozmieszczenia bramek i wykorzystania linii połączeniowych pomiędzy obszarami CLBs. Układ oscylatora implementowano w strukturze FPGA (Spartan-3).
EN
This paper presents the results of investigations how the inverter location in the area of a reconfigurable FPGA chip influence the properties of a ring oscillator. Ring oscillators are very often implemented in FPGA structures, even in the very advanced projects. They are used both as a single element or an array of sensors for measuring the chip temperature and thermal verification on reconfigurable systems [1, 2], as well as for measuring the propagation delay on the internal wires of the FPGA chip [3, 4]. In our investigation the ring oscillator composed of 11 inverters was implemented in the Spartan-3 structure (Fig. 1). There were performed simulations and experiments. We tested whether and how the location of the single inverter and the delay of lines influenced the ring oscillator frequency (Figs. 2 and 3). The properties of different connections between CLBs in the FPGA structure are described (Figs. 4 and 5). The ring oscillator was located in different areas of the chip to minimize or specially increase the length of lines between the inverters (Figs. 6, 7 and 8). The simulation and experiment results are presented in Tab. 1 and discussed. In conclusion we can state that when one wants to use a ring oscillator as a sensor and to analyze the frequency or delay times, there should be considered not only the influence of temperature or voltage supply of the chip core [8] but also the location of the sensor. In the case of an array of sensors, each ring oscillator should be analyzed and calibrated independently.
PL
Temperaturowa stabilność czasu propagacji elementów elektronicznych wpływa na dokładność precyzyjnych przyrządów pomiarowych, szczególnie wykorzystywanych w metrologii czasu i częstotliwości. Czas propagacji cyfrowych elementów elektronicznych zależy od wielu czynników, takich jak temperatura i napięcie zasilania. Wpływ temperatury i napięcia zasilania na czas propagacji występuje we wszystkich rodzajach układów cyfrowych (m.in. CMOS, HCMOS), w tym w rekonfigurowanych układach cyfrowych. W celu utrzymania stałej wartości czasów propagacji kompensowanych układów, na podstawie przeprowadzonych pomiarów wyprowadzono liniowe równanie kompensacyjne określające wartość napięcia zasilającego w zależności od temperatury. Opracowano i zbadano układ kompensujący, który ponad 10-krotnie zwiększa stabilność czasu propagacji w porównaniu do układu o stałym napięciu zasilającym.
EN
The temperature stability of the propagation time of electronic components influence the accuracy of precision measuring instruments, especially used in the time and frequency metrology. The propagation time of electronic components is dependent on many factors such as operating temperature and supply voltage. Influence of temperature and supply voltage on the propagation time apply to the all digital ICs (for example CMOS, HCMOS) including programmable logic devices. In aim to the propagation time stabilization the compensatory equation was defined after execution of measurements of propagation time of basic logical CMOS gates and CPLD structures dependence from temperature and supply voltage. Have been developed and tested a compensation circuit which increases the propagation time stability more than 10 times in comparison with a circuit with constant power supply.
PL
W pracy opisano zachowanie programowalnego układu PLD po poddaniu go działaniu niskich temperatur, obniżanych do temperatury ciekłego azotu. Przedstawiono wyniki badań eksperymentalnych, zmierzających do określenia wpływu temperatury i poboru mocy przez wykonaną w technologii CMOS strukturę EE PLD na czasy propagacji zintegrowanych bramek logicznych. Zaprezentowano charakterystyki średniego czasu propagacji pojedynczej bramki w zakresie niskich temperatur i porównano uzyskane wyniki z prognozami, formułowanymi w oparciu o zjawisko samopodgrzewania struktury półprzewodnikowej.
EN
In this paper behavior of a programmable logic device (PLD) in the low temperature range, including temperature of liquid nitrogen, is presented. There are given the results of experiments in which we tried to determine the influence of temperature and power consumption on the propagation delay of integrated logic gates implemented in an EE PLD CMOS structure. The thermal conditions of work resulting from the ambient temperature, clock signal frequency, value of voltage supply and current consumption connected with output loads and switching frequency are discussed. The PLD device properties in the nominal range of ambient temperatures and expected behavior after reducing the temperature are described. The main idea of the circuit for average propagation delay measuring (Fig. 1) and the voltage-current dependence for recommended test output loads (Figs. 2 and 3) are discussed. The test circuit with pull-up resistors for increasing self-heating effect is proposed (Fig. 4). The results for the propagation delay (Fig. 5) and current consumption (Fig. 6) at 1 kHz and 1 MHz switching fre-quency as a function of the temperature changing from -196°C to 20°C are shown. The propagation delay vs. temperature (Figs. 7 and 8) and the current consumption vs. temperature (Fig. 9) for the circuit with external pull-up resistors are presented. The influence of voltage supply value changes on the obtained results is taken into consideration. The results are discussed and compared with expectations.
PL
W artykule przedstawiono wyniki eksperymentów, w których testowano działanie oscylatora pierścieniowego zaimplementowanego w układach reprogramowalnych. Analizowano właściwości opóźniające inwerterów zaprogramowanych w strukturze CPLD układów XC2C32 (Xilinx). W temperaturze otoczenia (300 K) i w temperaturze ciekłego azotu (77 K), badano zdolność do generacji drgań, stałość częstotliwości oscylatora (na podstawie pomiarów średniookresowych), wpływ zmian napięcia zasilania na częstotliwość oscylacji.
EN
In this paper the results of experiments with a ring oscillator implemented in programmable devices (XC2C32 Xilinx) are presented. The examined devices were immersed in a Dewar flask (Fig. 1) with liquid nitrogen. It was found out that the ring oscillator (composed of 11 gates) (Fig. 2) still worked properly in such low temperature. According to the theory of silicon semiconductors, the activity of carriers increases in low temperatures, so there was expected decrease in the propagation delay for every gate and increase in the oscillation frequency. The output frequency was measured and the average propagation time for inverters was calculated. The results at 77 K (temperature of liquid nitrogen) were compared with those at 300 K (room temperature) (Tab. 1). The output frequency characteristics versus the supply voltage for the examined devices were measured and drawn (Figs. 3 and 4). The quadric polynominal functions which fit these non-linear characteristics were proposed. The relative change of the oscillation frequency versus the supply voltage is shown in Fig. 5. The frequency sensitivity depends both on supply voltage and temperature. The relative sensitivity (normalized) in relation to the voltage at 300 K and 77 K is presented in Fig. 6. Based on the results from 24-hour measurements (86400 samples were collected) the frequency stability was determined. The average value and standard deviation value were calculated (Tab. 2) but first and foremost there was calculated and plotted the Allan deviation (Fig. 7).
PL
W artykule przedstawiono wyniki eksperymentów, w których sprawdzono zdolność pracy wybranych układów reprogramowalnych w warunkach niskich temperatur, w szczególności w temperaturze ciekłego azotu 77 K (-196°C). Zaprezentowano wyniki pomiarów uśrednionego czasu propagacji inwerterów zrealizowanych w testowanych układach reprogramowal-nych. Do badań wybrano struktury PLD oraz CPLD. Badano układy ATF16V8 (Atmel), GAL16V8 (Lattice) i XC2C32 (Xilinx). Przedstawiono wyniki pomiarów uzyskane w temperaturze pokojowej (300 K) oraz w warunkach niskich temperatur - w temperaturze ciekłego azotu (77 K).
EN
In this paper the results of experiments with programmable devices in low temperatures are presented. For most CMOS devices, including programmable devices, low temperature, in particular the temperature of liquid nitrogen 77 K, is far below the typical range. The producers usually guarantee the proper work for their devices at 0°C for commercial devices or -40°C for industrial ones. Even for special military devices the lowest temperature used is -55°C. In the experiments performed by the authors the ability of proper working at the liquid nitrogen temperature (77 K) for some chosen PLD and CPLD devices were examined. The examined devices were immersed in a Dewar flask (Fig. 1). There was found that some of them worked properly in such low temperature, and also could be programmed. According to the theory of silicon semiconductors, in low temperatures the activity of carriers increases, so decrease in the propagation delay of the measured gates was expected. There was measured the average propagation time of the inverters implemented in programmable devices (Fig. 2 and Fig. 3). The results for GAL16V8, ATF16V8 and XC2C32 are given in Tabs. 1 and 3. The obtained results of the average propagation delay and the estimated maximum system frequency were compared with the datasheet information (Tabs. 2 and 4).
PL
Celem prac badawczych przedstawionych w tej pracy jest wyznaczenie analitycznych zależności opisujących wpływ temperatury oraz napięcia zasilającego na czas propagacji cyfrowych układów logicznych oraz określenie relacji pomiędzy tymi zależnościami. W artykule zaprezentowano pomiary zmian czasu propagacji wybranych bramek logicznych w funkcji temperatury i w funkcji napięcia zasilającego. Przedstawiono wyniki pomiarów zmian czasu propagacji badanych układów w funkcji temperatury przy regulacji napięcia zasilającego wg wyznaczonych równań kompensacyjnych.
EN
The main purpose of the research work presented in this paper is to determine an analytical dependence describing the influence of temperature and supply voltage on the propagation time of gates, and to define the relations between those dependences. The article presents the measurements of changes in propagation times of logical gates in the function of temperature as well as in the function of supply voltage. The results of measurements of propagation time changes of tested integrated circuits in a function of temperature during adjustment the supply voltage by determined compensation equations are presented.
7
Content available Wyznaczanie czasu propagacji fali tętna obwodowego
PL
W artykule zaprezentowano metodę wyznaczania czasu propagacji fali tętna obwodowego (ang. pulse transit time, PTT), zdefiniowanego jako przedział czasu mierzony od początku fazy skurczu serca do momentu pojawienia się tzw. ramienia wstępującego fali tętna. W metodzie tej wykorzystano sygnał fotopletyzmograficzny (PPG) reprezentujący falę tętna obwodowego oraz sygnał fonokardiograficzny (FKG), który umożliwia detekcję faz skurczu i rozkurczu w każdym cyklu pracy serca. W artykule podano także przykłady wykorzystania parametru PTT w diagnostyce medycznej.
EN
In the paper the method for determination of peripheral pulse wave transit time (PTT) (defined as the time delay between the onset of a pulse wave and the systolic period) is presented. This method is based on two signals: photoplethysmographic (PPG) and phonocardiographic (PCG). The PPG signal represents the peripheral pulse wave, while the PCG signal allows detection of the systolic and diastolic phase in each cardiac cycle. The examples of using PTT in medical diagnostics are also given.
PL
Wobec bardzo wysokich wymagań stawianych współczesnym układom elektronicznym bardzo wielkiej skali integracji (VLSI) zachodzi potrzeba dogłębnego poznania ilościowego i jakościowego parametrów tych układów, wpływających na ich walory funkcjonalne i niezawodnościowe. Jeszcze nie tak dawno problem strat energii traktowany był marginalnie. Jeśli weźmie się pod uwagę, że współczesne procesory zasilane są energią o mocy kilkuset watów, aż 90% tej energii to straty, należy uznać, że sprawność przetwarzania informacji odgrywa bardzo dużą rolę. Miniaturyzacja umożliwia skrócenia czasu propagacji sygnałów przez tranzystory i ścieżki przewodzące modułu scalonego ale jednocześnie powoduje, że gęstość mocy strat jest na granicy wartości dopuszczalnej. Istnieją więc kompromisy konstrukcyjne, które mają bardzo istotny wpływ na finalne walory użytkowe układu scalonego. Autorzy uznali za ważną gruntowną analizę istotnych parametrów układów krzemowych CMOS. Niniejsza praca poświęcona jest ocenie parametrów użytkowych cyfrowych układów CMOS. W pierwszej części artykułu przedmiotem analizy są czasy propagacji i marginesy zakłóceń, natomiast w drugiej - pobór energii. W tej części artykułu przedstawiono analityczne modele podstawowych bramek CMOS -- inwertera oraz dwuwejściowych bramek NOR i NAND. Zostały one sporządzone na bazie równań opisujących pracę tranzystora MOSFET, którego model wraz z krótką charakterystyką struktury CMOS został zaprezentowany w rozdziale drugim. Rozdział trzeci przedstawia model inwertera oraz wykonanie na jego podstawie analizy marginesów zakłóceń i czasów propagacji. Marginesy zakłóceń wyznaczono z definicji - na podstawie charakterystyki przejściowej bramki. Natomiast aby oszacować czasy propagacji rozpatrzono działanie inwertera obciążonego pojemnością, sterowanego idealnym napięciem prostokątnym - czasy narastania i opadania równe zeru. Rozdziały czwarty i piąty zawierają podobne modele dwuwejściowych bramek NAND i NOR, których zachowanie rozpatrzono przy sterowaniu ich z różnych oraz zwartych ze sobą wejść. Modele te opisują charakterystyki przejściowe, pobór prądu bramki w funkcji napięcia wejściowego, a także napięcie przełączania bramki. Dzięki nim możliwe jest także oszacowanie statycznych i quasi zwarciowych strat energii, co zostanie wykorzystane w drugiej części artykułu. W rozdziale szóstym przedstawiono porównanie wyników uzyskanych za pomocą powyższych modeli z rezultatami otrzymanymi podczas symulacji komputerowych. Teoretyczne rozważania zostały wykonane na ogólnych parametrach technologicznych więc przez podstawienie określonych wartości tych parametrów do konkretnej technologii CMOS można wyznaczyć charakterystyki przejściowe i oszacować statystyczny pobór prądu oraz wartości czasów propagacji i marginesów zakłóceń bramek. Dzięki temu możliwe jest porównanie ze sobą bramek zbudowanych z identycznych tranzystorów (np. NAND i NOR), bramek jednego typu zbudowanych z tranzystorów o różnych wymiarach, jak i układów wykonanych w różnych technologiach CMOS. Rezultaty teoretycznych rozwiązań pozwalają także na ukazanie zależności panujących między różnymi wielkościami lub parametrami, na przykład czasu propagacji bramki w funkcji pojemności obciążające j: tp = tp (C) lub napięcia progowego bramki w funkcji parametrów βN i βP :Vth (BN, BP). Rozważania liczbowe przeprowadzono dla technologii Alcatel MIETEC CMOS 0.7u - C07MA - C07MD.
EN
There is need to thoroughgoing quantitative and qualitative knowledge of digital CMOS circuits parameters, because of very high requirements of functionality and reliability that are putted to VLSI integrated circuits. The problem of energy losses was in the margin until quite recently. But modern processors demand hundreds Watts of energy. So if you take into consideration that about 90% of that energy is lost you should realise importance of information processing efficiency. Miniaturisation allows cutting down the propagation time delay through transistors and conduct paths of integrated circuit and simultaneously causes growing up of power density to the boundary of acceptable value. So there are some construction compromises which have an influence on final properties of integrated circuit. The authors acknowledge that thoroughgoing analysis of important parameters silicon CMOS circuits is significant. The paper is devoted to assessment of utilitarian parameters of digital CMOS integrated circuits. In the first part of the article propagation time delays and noise margins are discussed, whereas energy consumption is taken into consideration in the second part of the article. In this part of article the analytical models of basic CMOS gates (inverter, two - input NAND and two - input NOR gates) are presented. They were performed on the basis of MOSFETs equations. The MOSFET model and short characterisation of CMOS structure are presented in second chapter. Third chapter contains inverter model and analysis of noise margins and propagation time delays that was performed on the basis of this inverter model. The noise margins were evaluated from the voltage - transfer characteristic of gate. While, in order to propagation time delays evaluations the work of capacitance loaded inverter was analysed. The inverter was driven by ideal - pulse signal -- the raising and the falling time are equal to zero. The fourth and the fifth chapters contain similar models, which are performed for two - input NAND and NOR gates. Behaviours of these gates were considered for distinct cases of control: driving from different inputs separately and driving from short - circuit inputs. The models describe voltage - transfer charateristics, gate current consumption versus input voltage, and gate threshold voltage. The evaluation of static and quasi short - circuit energy losses is also possible, thanks to these models. And it will be used in the second part of the article. The sixth chapter presents comparison between results obtained from these models and simulation results. Theoretical considerations were performed with use general variables (technological parameters) so, voltage - transfer characteristics, evaluation of current consumption, evaluation of noise margins, and propagation time delays can be received by replacement the concrete values of these parameters. So, comparison between gates built with identical transistors (for instance NAND and NOR), one type gates built with different size transistors, and the circuits performed in different CMOS technologies is possible. Interdependence between different parameters or quantities can be obtained from results of theoretical analysis, for example gate propagation time delay versus load capacitance: tp = tp (C) or gate threshold voltage versus βN and βP parameters: Vth = Vth (BN, BP). The numeral results are obtained for Alcatel MIETEC CMOS 0.7u - C07MA - C07MD technology.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.