Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Ti2AlC
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Termodynamicznie stabilne węgliki o budowie nanolaminatowej stanowią grupę materiałów łączących w sobie cechy zarówno metali, jak i ceramiki. Materiały te wytworzone w postaci porowatej mogą być zastosowane między innymi jako przewodzące prąd elektryczny podłoża do katalizatorów oraz matryce do kompozytów o strukturze infiltrowanej. W niniejszej pracy wykorzystano metodę żelowania spienionej zawiesiny do wytworzenia porowatych tworzyw z Ti2AlC. W roli środka żelującego użyto agarozę. Przygotowano gęstwy o różnych stężeniach agarozy: 0,8%, 1,1% oraz 1,3% wag. w przeliczeniu na masę proszku ceramicznego, które następnie spieniano i żelowano w celu sporządzenia porowatych kształtek. Stwierdzono, że lepkość zawiesiny Ti2AlC przeznaczonej do spieniania jest czynnikiem kształtującym porowatość całkowitą oraz rozmiar komórek pianki i okien w ściankach komórek. Wraz ze wzrostem lepkości zawiesiny przeznaczonej do spieniania zaobserwowano zmniejszanie porowatości całkowitej w piankach oraz rozmiaru komórek pianki i okien w ściankach komórek.
EN
Ternary carbides such as MAX phases are nano-layered ceramics that exhibit a unique combination of characteristics typical of both ceramics and metals. In porous forms they can be used for example as catalyst supports or as preforms for metal-ceramic interpenetrating composites. In this work porous Ti2AlC foams were manufactured by the gel-casting method with the use of agarose as a gelling agent. The rheological properties of Ti2AlC slurries with different agarose content were investigated. A correlation between the viscosity of the starting slurry and the microstructure of the final foam has been found. The mean cell size and window size as well as the total porosity decreased with increasing agarose concentration in the starting slurry.
PL
Kompozyty metalowo-ceramiczne o strukturze infiltrowanej charakteryzują się unikalną przestrzenną strukturą wzajemnie przenikających się szkieletów fazy metalowej i fazy ceramicznej. Najczęstszym sposobem wytwarzania tego typu kompozytów jest infiltracja roztopionego metalu do porowatej kształtki ceramicznej. W tej pracy do wytworzenia porowatych materiałów z T i2AlC zastosowano metodę żelowania spienionej zawiesiny ceramicznej (ang. gel-casting of foams). Metoda ta pozwala na wytworzenie ceramiki porowatej w postaci materiałów piankowych. Wytworzono pianki ceramiczne o porowatości całkowitej w zakresie 80÷90 %, które następnie charakteryzowano pod względem rozmiarów makroporów i połączeń między makroporami, porowatości otwartej i wytrzymałości na ściskanie. Wielkości te określają przydatność ceramiki porowatej do procesu infiltracji ciśnieniowej roztopionymi metalami. Stwierdzono, że rozmiar makroporów zawarty był w granicach 381÷547 μm, a rozmiar połączeń między makroporami mieścił się w zakresie od 77 do 134 μm. Pianki o porowatości w zakresie 80÷90 % charakteryzowały się dużą, jak na materiały wysokoporowate wytrzymałością na ściskanie, która zawarta była granicach 8÷18 MPa.
EN
MAX phases are a group of advanced ceramics with nano-layered structure. They have Mn+1AXn composition, where M is an early transition metal, A is an element of A group and X is a carbon and/or nitrogen. The growing interest in this novel group of materials results in their unique combination of characteristics typical of both ceramics and metals. They are elastically stiff good thermal and electrical conductors, resistant to chemical attack, and have relatively low thermal expansion coefficients. On the other hand, they are relatively soft and most are readily machinable, thermal shock resistant and damage tolerant. MAX phases can be produced both in dense and in porous form. In porous form they can be used for example as catalyst supports and preforms for metal-ceramic interpenetrating composites. One method to achieve an interpenetrating microstructure of a composite is the infiltration of a molten metal into a porous ceramic body called a preform. In this work porous Ti2AlC foams were manufactured by the gel-casting method with the use of agarose as an environmentally friendly gelling agent. This technique consists of the combination of the gel-casting process as well as the aeration of ceramic suspensions. It was used because it allows to manufacture porous ceramics in the form of highly porous bodies with homogeneous morphology with controlled porosity and pore size. Ti2AlC foams possessing total porosity in the range of 60÷90 % were manufactured and their microstructure was characterized in order to determine their applicability for the metal melt infiltration technique. Foams having total porosity of 77,9 and 85,3 % were chosen for the further investigation because of the fact that their open porosity was almost the same as the total porosity. As it was shown on the SEM images the samples presented a highly interconnected porous network. The average cell and cell window size was determined on the base of SEM image analysis. Cell size ranged from 381 to 547 μm and the average cell window size ranged from 77 to 134 μm. The strength of the foams was high and ranged from 8 to 18 MPa for the materials having porosity of 85,3 and 77,9 % respectively. This relatively high strength is typical for the porous materials manufactured by gelcasting technique. A relative high compression strength as well as the open porosity of Ti2AlC foams make them suitable for pressure metal melt infiltration in order to produce ceramic-metal interpenetrating composites.
EN
Authors present results of works on the interesting new group of advanced ceramics called MAX phases – Ti-based ternary carbides and nitrides. They have an original layered structure involved highly anisotropic properties laying between ceramics and metals, with high elastic modulus, low hardness, very high fracture toughness and high electrical and heat conductivity. Using Self-Propagating High-Temperature Synthesis (SHS) in the combustion regime it is possible to prepare MAX phases-rich powders that can be used as the precursors for preparation of dense MAX polycrystals by presureless sintering or hot-pressing. Different novel Ti-based phases with layered structures, namely: Ti3AlC2 and Ti2AlC have been synthesized in a combustion regime. The possibility of controlling of combustion phenomena for obtaining near single-phase products is discussed in details as well as some of properties of the materials tested as structure and functional ceramics.
PL
Autorzy przedstawiają wyniki badań nad nową interesującą grupą zaawansowanych materiałów ceramicznych nazywanych fazami MAX – potrójnymi węglikami i azotkami tytanowymi. Posiadają one oryginalną strukturę warstwową, z której wynikają silnie anizotropowe właściwości (wysokie moduły sprężystości, niska twardość, bardzo wysoka odporność na kruche pękanie, dobre właściwości elektryczne i cieplne) umiejscawiające je pomiędzy ceramiką a metalami. Dzięki zastosowaniu Samorozwijającej się Syntezy Wysokotemperaturowej SHS możliwe było otrzymywanie bogatych w fazy MAX proszków, mogących służyć jako prekursory w preparatyce gęstych polikryształów za pomocą spiekania pod ciśnieniem lub swobodnego. Przeprowadzone zostały syntezy dwóch materiałów warstwowych: Ti3AlC2 i Ti2AlC. W artykule przedstawiono możliwości kontrolowania procesu spalania w celu uzyskania niemal jednofazowych produktów a także przedstawiono niektóre właściwości badanych materiałów pod kątem zastosowania jako materiały funkcjonalne i strukturalne.
4
Content available remote Diffraction study of thermal dissociation of Ti3AlC2 in vacuum
EN
Titanium aluminum carbide exhibits a unique combination of characteristics of both metals and ceramics coupled with an unusual combination of mechanical, electrical and thermal properties. In this paper, the effect of high-vacuum annealing on the phase stability and phase transition of Ti3AlC2 at up to 1550°C was studied using in-situ neutron diffraction. The decomposition of Ti3AlC2 into TiC was observed from the change of relative phase abundances as a function of temperature. The apparent activation energies of phase decomposition was determined to be -71.9 kJ/mol. Near-surface composition depth profiling using grazing-incidence synchrotron radiation diffraction has revealed a graded phase composition in vacuum-decomposed surfaces.
PL
Węglik tytanowo-glinowy wykazuje unikalną kombinację cech metalicznych i ceramicznych sprzężonych z niezwykłą kombinacją właściwości mechanicznych, elektrycznych i cieplnych. W niniejszym artykule zbadano za pomocą dyfrakcji neutronów, zachodzącej in-situ, wpływ wygrzewania do 1550°C w wysokiej próżni na skład fazowy i przejście fazowe Ti3AlC2. Rozkład Ti3AlC2 do TiC zaobserwowano na podstawie zmiany liczebności faz w funkcji temperatury. Pozorne energie aktywacji procesu rozkładu fazowego określono na -71.9 kJ/mol. Wyznaczenie głębokościowego profilu składu przypowierzchniowego za pomocą dyfrakcji promieniowania synchrotronowego padającego pod małym kątem (GISRD) ujawniło zmieniający się stopniowo skład fazowy w próbkach rozkładanych próżniowo.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.