Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the challenges facing structural engineers is to identify the performance of important structures against heavy impact loads, therefore, the need to investigate this type of load on structures is increasingly felt. The main purpose of this study was to evaluate the effect of support conditions, span length, and strength of concrete and reinforcement percentage on the performance of reinforced concrete beams against the impact load of 50 kg spherical falls on a height of one meter. For this purpose, after validation, a number of reinforced concrete beams with the same cross section but with simple and rigid support conditions, span lengths of 3, 4 and 5 meter, strengths of 25, 30 and 35 MPa, as well as minimum, standard and maximally longitudinal reinforcement values, modeled and analyzed in Abaqus software. The results of this study show that for 3, 4 and 5 m lengths, the boundary conditions change from simple to rigid, reducing the mid beam displacement by 46.91%, 45.55% and 39.46%, respectively. By changing the characteristic strength of concrete from 25 to 35 MPa, the maximum displacement for rigid support and the simple support order of 10.17% and 10.9% reduced. By increasing the amount of reinforcement from minimum to maximum reinforcement, the maximum amount of force applied to the beam for the rigid and simple support reinforcement increased by 33 and 32.66 percent, respectively. The use of stirrups special led to an increase of 13 percent of the beam is tolerable.
Wydawca
Rocznik
Tom
Strony
309--321
Opis fizyczny
Bibliogr. 16 poz., fig., tab.
Twórcy
autor
- Department of Civil Engineering, College of Engineering, University of Babylon, Babylon, Iraq
autor
- Department of Civil Engineering, College of Engineering, University of Babylon, Babylon, Iraq
autor
- Department of Civil Engineering, College of Engineering, University of Babylon, Babylon, Iraq
Bibliografia
- 1. Anil Ö, Durucan C, Erdem RT, Yorgancilar MA. Experimental and numerical investigation of reinforced concrete beams with variable material properties under impact loading. Construction and Building Materials. 2016; 125: 94–104. https://doi.org/10.1016/j.conbuildmat.2016.08.028.
- 2. Fouad M, Fayed MN, Hamdy GA, Abdelrahman A. Effect of blast loading on seismically detailed RC columns and buildings. Civil Engineering Journal 2021; 7: 1406–1425. https://doi.org/10.28991/cej-2021-03091733.
- 3. Fu Y, Yu X, Dong X, et al. Investigating the failure behaviors of RC beams without stirrups under impact loading. International Journal of Impact Engineering 2020; 137: 103432. https://doi.org/10.1016/j.ijimpeng.2019.103432.
- 4. Hassanein MF, Kharoob OF, Taman MH. Experimental investigation of cementitious material-filled square thin-walled steel beams. Thin-Walled Structures 2017; 114: 134–143. https://doi.org/10.1016/j.tws.2017.01.031.
- 5. Lu X, Aboutaha RS. Structural strengthening of square spread footings using circular external prestressing. Journal of Building Engineering 2020; 31: 101344. https://doi.org/10.1016/j.jobe.2020.101344.
- 6. Mohemmi M, Broujerdian V, Rajaeian P. An equivalent method for bar slip simulation in reinforced concrete frames. International Journal of Civil Engineering 2020; 18: 851–863. https://doi.org/10.1007/s40999-020-00507-6.
- 7. Moradi R, Khalilzadeh Vahidi E. General Study of New Ideas and Practical of Friction Dampers for Passive Vibration Control of Structures. Karafan Journal 2021a; 17: 239–257. https://doi.org/10.48301/kssa.2021.126575.
- 8. Moradi R, Khalilzadeh Vahidi E. Experimental study of rotational-friction damper with two slip load and evaluation of its performance in RC frame under cyclic loading. Journal of Concrete Structures and Materials 2021b; 6: 121–137. https://doi.org/10.30478/jcsm.2021.292383.1209.
- 9. Moradi R, Khalilzadeh Vahidi E. Comparison of Numerical Techniques of Masonry Infilled RC Frames for Lateral Loads. Journal of Concrete Structures and Materials 2018; 3: 102–118. https://doi.org/10.30478/jcsm.2019.82172.
- 10. Qu Z, Fu X, Kishiki S, Cui Y. Behavior of masonry infilled Chuandou timber frames subjected to in-plane cyclic loading. Engineering Structures 2020; 211: 110449. https://doi.org/10.1016/j.engstruct.2020.110449.
- 11. Saleh Z, Sheikh MN, Remennikov A, Basu A. Overload damage mechanisms of GFRP-RC beams subjected to high-intensity low-velocity impact loads. Composite Structures 2020; 233: 111578. https://doi.org/10.1016/j.compstruct.2019.111578.
- 12. Tahnat YBA, Samaaneh MA, Dwaikat MMS, Hahlah AM. Simple equations for predicting the rotational ductility of fiber-reinforced-polymer strengthened reinforced concrete joints. Structures 2020; 24: 73–86. https://doi.org/10.1016/j.istruc.2020.01.010.
- 13. Ulzurrun GSD, Zanuy C. Enhancement of impact performance of reinforced concrete beams without stirrups by adding steel fibers. Construction and Building Materials 2017; 145: 166–182. https://doi.org/10.1016/j.conbuildmat.2017.04.005.
- 14. Vahidi EK, Moradi R. Numerical study of the force transfer mechanism and seismic behavior of masonry infilled RC frames with windows opening. Civil Engineering Journal 2019; 5: 61–73. https://doi.org/10.28991/cej-2019-03091225.
- 15. Xu T, Chen G, Deng K, et al. Probabilistic analysis of exterior hanging scaffold strength under impact load. Structures 2020; 23: 739–750. https://doi.org/10.1016/j.istruc.2019.12.012.
- 16. Yılmaz T, Kıraç N, Anil Ö, et al. Experimental investigation of impact behaviour of RC slab with different reinforcement ratios. KSCE Journal of Civil Engineering 2020; 24: 241–254. https://doi.org/10.1007/s12205-020-1168-x.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fffbda16-cd6e-4515-8726-33617e8326e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.