Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the effectiveness of geodetic methods in Structural Health Monitoring (SHM), focusing on the utilization of the High-Rate Global Navigation Satellite System (HR-GNSS) and Robotic Total Station (RTS) for monitoring structural movements. Experiments were conducted on a horizontal single-axis shake table to simulate various frequencies and amplitudes. Data were analyzed using time series and Fast Fourier Transform (FFT) techniques to evaluate the performance of geodetic measurement methods in SHM studies Two applications were conducted using a single-axis shake table. In the first, the table oscillated at 0.25 Hz frequency and 20 mm amplitude, while data from a GNSS receiver on the upper table underwent processing with the TRACK module of GAMIT/GLOBK software using the kinematic post-process (KPP) GNSS technique. In the second, the reflector on the shake table moved through eight oscillations at various amplitudes and frequencies, monitored automatically with a LEICA TPS1200 RTS. Time series and FFT analyses were performed on all application data to determine oscillation frequencies and amplitudes. Method accuracy was assessed by comparing these values with data from the shake table’s high-precision position sensor (Linear Variable Differential Transformer-LVDT). Results showed good agreement between HR-GNSS measurements and LVDT data, with a -1.6mm amplitude difference for KPP GNSS. Additionally, RTS measurements accurately determined frequency values, with amplitude differences ranging from 0.2 mm to 6.5 mm. Root Mean Square Error (RMSE) values for eight RTS tests, covering frequencies between 0.25-0.50 Hz and amplitudes between 4.5-73.4 mm, varied from 2.1mm to 6.3mm, reflecting performance variability across different conditions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e53, 2024
Opis fizyczny
Bibliogr. 72 poz., rys., tab., wykr.
Twórcy
autor
- Yildiz Technical Universty, Istanbul, Turkey
autor
- Yildiz Technical Universty, Istanbul, Turkey
Bibliografia
- 1. Akpınar, B., Aykut, N.O., Dindar, A.A. et al. (2017). Ag RTK GNSS Yönteminin YapıSaglıgıIzleme Çalısmalarında Kullanımı, Afyon Kocatepe University J. Sci. Eng., 17(2), 1030–1040.
- 2. Amies, A.C., Pretty, C.G.,Rodgers,G.W. et al. (2018). Shake Table Testing of a Radar-Based Structural Health Monitoring Method. 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Oulu, Finland, 2018, 1–6. DOI: 10.1109/MESA.2018.8449179.
- 3. Bezcioglu, M., Yigit, C.O., Mazzoni, A. et al. (2022) High-Rate (20 Hz) Single-Frequency GPS/GALILEO Variometric Approach for Real-Time Structural Health Monitoring and Rapid Risk Assessment. Adv. Space Res., 70(5), 1388–1405. DOI: 10.1016/j.asr.2022.05.074.
- 4. Bezcioglu, M., Yigit, C.O., Karadeniz, B. et al. (2023). Evaluation of real-time variometric approach and real-time precise point positioning in monitoring dynamic displacement based on high-rate (20 Hz) GPS Observations. GPS Solut., 27(1), 43. DOI: 10.1007/s10291-022-01381-6.
- 5. Bezmenov, I.V., Blinov, I.Y., Naumov, A.V. et al. (2019). An Algorithm for Cycle-Slip Detection in a Melbourne–Wübbena Combination Formed of Code and Carrier Phase GNSS Measurements. Meas. Tech., 62, 415–421. DOI: 10.1007/s11018-019-01639-5.
- 6. Bilich, A., Cassidy, J., and Larson, K. M., (2008) GPS seismology: application to the 2002 Mw=7.9 Denali Fault Earthquake. Bull. Seism. Soc. Am., 98, 593–606. DOI: 10.1785/0120070096.
- 7. Brownjohn, J.M.W. (1997). Vibration characteristics of a suspension footbridge. J. Sound Vib., 202(1), 29–46. DOI: 10.1006/jsvi.1996.0789.
- 8. Brownjohn, J.M.W., Dumanoglu, A.A., Severn, R.T. et al. (1987). Ambient vibration measurements of the Humber suspension bridge and comparison with calculated characteristics. Proc. ICE, 2(83), 561–600. DOI: 10.1680/iicep.1987.335.
- 9. Çelebi, M. (2000). GPS in Dynamic Monitoring of Long-Period Structures. Soil dynamic and Earthquake Engineering, 20, 477–483.
- 10. Çelebi, M., and Sanli, A. (2002). GPS in Pioneering Dynamic Monitoring of Long-Period Structures. Earthquake Spectra, 18(1), 47–61. DOI: 10.1193/1.1461375.
- 11. Dindar, A.A., Akpınar, B., Gurkan, K. et al. (2018). Development Of Low-Cost Hybrid Measurement System. In 16. Europen Confrence on Earthquake Engineering, 2018, June 18–21, Greece, Thessolaniki.
- 12. Dumanoglu, A.A. and Severn, R.T. (1985). Asynchronous Seismic Analysis of Modern Suspension Bridges. Part 1: Free Vibration, University of Bristol, Bristol, 1985.
- 13. Eckl, M.C., Snay, R.A., Soler, T. et al. (2001).Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. J. Geod., 75, 633–640. DOI: 10.1007/s001900100204.
- 14. Erdogan, H. (2006). Mühendislik Yapılarındaki Dinamik Davranısların Jeodezik Ölçmelerle Belirlenmesi. Doctoral thesis, Yildiz Technical University,Graduate School of Science and Engineering, Istanbul, Turkey.
- 15. Erdogan, H., and Gülal, V.E. (2013). Ambient Vibration Measurements of the Bosphorus Suspension Bridge by Total Station and GPS. Exp. Tech., 37. DOI: 10.1111/j.1747-1567.2011.00723.x.
- 16. Erkaya, H. (1987). Mühendislik Yapılarındaki Deformasyonların Jeodezik Yöntemlerle Saptanmasıve Bir Model Üzerinde Uygulanması. Doctoral thesis, Yildiz Technical University,Graduate School of Science And Engineering, Istanbul, Turkey.
- 17. Erol, T., and Sanlı, D.U. (2023). Effect of Large Height Difference on Global Positioning System Solutions from a Commercially Available Software Package. J. Surv. Eng., 149(1). DOI:10.1061/(ASCE)SU.1943-5428.0000415.
- 18. Ferreira, J.G., and Branco, F. (2015). Measurement of vertical deformations in bridges using an innovative elastic cell system. Exp. Tech., 39, 13–20. DOI: 10.1111/j.1747-1567.2012.00852.x.
- 19. Ge, L. (1999). GPS seismometer and its signal extraction. In 12th Int. Tech. Meeting, Sat. Div. of Navigation, Nashville, Tennessee, 41-51.
- 20. Gorski, P. (2017). Dynamic characteristic of tall industrial chimney estimated from GPS measurement and frequency domain decomposition. Eng. Struct., 148. DOI: 10.1016/j.engstruct.2017.06.066.
- 21. Gülal, V.E., Dindar, A.A., Akpınar, B. et al. (2015). Analysis and Management of GNSS Reference Station Data. Tech. Gazette, 22(2), 404–414. DOI: 10.17559/TV-20140717125413.
- 22. Hartinger, H., and Brunner, F.K. (1998). Experimental detection of deformations using GPS. Proceedings of IAG Special Commission 4 Symposium Eisenstadt, 145-152.
- 23. Herring, T.A., King, R.W., and McClusky, S.C. (2009). Introduction to GAMIT/GLOBK. Release 10.35. Massachussetts Institute of Technology, Cambridge, MA, USA.
- 24. Herring, T., Gu, C., Toksöz, N., et al. (2018). GPS Measured Response of a Tall Building due to a Distant Mw 7.3 Earthquake. Seism. Res. Lett., 90(1), 149–159. DOI: 10.1785/0220180147.
- 25. ICSM (Intergovernmental Committee on Surveying and Mapping) (2014). Guideline for control surveys by GNSS, Version 2.1. Canberra, Australia: ICSM.
- 26. Im, S.B., Hurlebaus, S., and Kang,Y.J. (2013). Summary Review of GPS Technology for Structural Health Monitoring. J. Struct. Eng., 139, 1653-1664. DOI: 10.1061/(ASCE)ST.1943-541X.0000475.
- 27. Kahveci, M., and Yıldız, F. (2001). Global Konum Belirleme Sistemi Teori-Uygulama. Nobel Yayın Dagıtım: Ankara.
- 28. Kijewski-Correa, T., Kareem A, and Kochly, M. (2006). Experimental verification and fullscale deployment of Global Positioning Systems to monitor the dynamic response of tall buildings. J. Struct. Eng., 132(8), 1242–1253. DOI: 10.1061/(ASCE)0733-9445(2006)132:8(1242).
- 29. King, R.W., and Bock, Y. (2003). Documentation for the GAMIT GPS Analysis Software. Release 10.1, Massachusetts Institute of Technology, Cambridge, MA, USA.
- 30. Konakoglu, B. (2021). Deformation Analysis Using Static, Kinematic and Dynamic Geodetic Deformation Models with GNSS: Deriner Dam, Artvin, Turkey. Exp. Tech., 45, 645–660. DOI: 10.1007/s40799-020-00435-z.
- 31. Kovacic, B., and Motoh, T. (2019). Determination of static and dynamic response of structures with geodetic methods in loading tests. Acta Geod. Geophys., 54, 243–261. DOI: 10.1007/s40328-019-00251-x.
- 32. Kwok, K.C.S., Apperley, L.W., Matesic I.J. et al. (1990). Measurement of Natural Frequency of Vibration and Damping Ratios of Tall Building and Structures. The instirution of Engineers Australia Structural Engineering Conference, Adelaide 3–5 October – Australia.
- 33. Lekidis,V., Tsakiri, M., Makra, K. et al. (2005). Evaluation of dynamic response and local soil effects of the Evripos cable-stayed bridge using multi-sensor monitoring systems. Eng. Geo., 79( 1–2), 43-59. DOI:10.1016/j.enggeo.2004.10.015.
- 34. Li, X., Linlin, G., Ambikairajah, E. et al. (2006). Full-scale structural monitoring using an integrated GPS and accelerometer system. GPS Solut., 10(4), 233–247. DOI: 10.1007/s10291-006-0023-y.
- 35. Li, X., Ge, M., Guo, B. et al. (2013). Temporal point positioning approach for real-time GNSS seismology using a single receiver. Geophys. Res. Lett., 40, 5677–5682. DOI: 10.1002/2013GL057818.
- 36. Liu, G., Nie, Z., Fang, R. et al. (2014). Recognition of seismic phases recorded by high-rate GNSS measurements: simulation and case studies. Chinese J. Geophys., 57(9), 2813–2825. DOI:10.6038/Cjg20140908.
- 37. Loewke, K., Meyer, D., Starr, A. et al. (2005). Structural health monitoring using FFT. Proc SPIE, 5765, 931–935. DOI: 10.1117/12.598827.
- 38. Lovse, J.W., Teskey,W.F., Lachapelle, G. et al. (1995). Dynamic Deformation Monitoring of Tall Structure Using GPS Technology. J. Surv. Eng., 121(1), 35–40. DOI: 10.1061/(ASCE)0733-9453(1995)121:1(3).
- 39. Meng, X., Dodson, A.H., and Roberts, G.W. (2007). Detecting bridge dynamics with GPS and triaxial accelerometers. Eng. Struct., 29 (11), 3178–3184. DOI: 10.1016/j.engstruct.2007.03.012.
- 40. Moschas, F., and Stiros, S. (2011). Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Eng. Struct., 33(1), 10–17. DOI:10.1016/j.engstruct.2010.09.013.
- 41. Moschas, F., and Stiros, S. (2015). Dynamic deflections of a stiff footbridge using 100-Hz GNSS and accelerometer data. J. Surv. Eng., 141(4). DOI: 10.1061/(ASCE)SU.1943-5428.0000146.
- 42. Nie, Z., Zhang, R., Liu, G. et al. (2016). GNSS seismometer: Seismic phase recognition of real-time high-rate GNSS deformation waves. J. Appl. Geophys., 135, 328–337. DOI: 10.1016/j.jappgeo.2016.10.026.
- 43. Oku Topal, G., and Akpınar, B. (2022). High rate GNSS kinematic PPP method performance for monitoring the engineering structures: Shake table tests under different satellite configurations. Meas. J. Int. Meas. Conf., 189. DOI: 10.1016/j.measurement.2021.110451.
- 44. Oku Topal, G., Karabulut, M.F., Aykut, N.O. et al. (2023). Performance of low-cost GNSS equipment in monitoring of horizontal displacements. Surv. Rev., DOI: 10.1080/00396265.2023.2179910.
- 45. Önen, Y.H., Dindar, A.A., Gülal, E. et al. (2014). Use of High-Frrequency GNSS Sebsors in Dynamıc Motions. Second European Conference on Eartquake Engineering and Seismology, 25-29 Agustos, Istanbul.
- 46. Panos A.P., and Stathis C.S. (2011). A supervised learning computer-based algorithm to derive the amplitudę of oscillations of structures using noisy GPS and Robotic Theodolites (RTS) records. Comp. Struct., 92–93, 337–348. DOI: 10.1016/j.compstruc.2011.10.019.
- 47. Picozzi, M., Milkereit, C., Zulfikar, C. et al. (2010). Wireless technologies for the monitoring of strategic civil infrastructures: an ambient vibration test on the Fatih Sultan Mehmet Suspension Bridge in Istanbul, Turkey. Bull. Earthquake Eng., 8, 671–691. DOI: 10.1007/s10518-009-9132-7.
- 48. Psimoulis, P., and Stiros, S. (2007). Measurement of deflections and of oscillation frequencies of engineering structures using Robotic Theodolites (RTS). Eng. Struct., 29(12), 3312–3324. DOI:10.1016/j.engstruct.2007.09.006.
- 49. Psimoulis, P., and Stiros, S. (2008). Experimental Assessment of the Accuracy of GPS and RTS for the Determination of the Parameters of Oscillation of Major Structures. Comp.-Aided Civil Infrastruct. Eng., 23, 389–403. DOI: 10.1111/j.1467-8667.2008.00547.x.
- 50. Rizos, C., and Han, S. (2003). Reference Station Network Based RTK Systems – Concepts and Progress. Wuhan University J. Nat. Sci., 8(2B), 566–574. DOI: 10.1007/BF02899820.
- 51. Roberts, G.W., Meng, X., and Dodson, A. (2004). Integrating a Global Positioning System and accelerometers to monitor deflection of bridges. J. Surv. Eng., 130(2), 65–72. DOI: 10.1061/(ASCE)0733-9453(2004)130:2(65).
- 52. Rydlund, P.H., and Densmore, B.K. (2012). Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey: U.S. Geological Survey Techniques and Methods. In Book 11, chap. D1. Washington, DC:USGS. DOI: 10.3133/tm11D1.
- 53. Schaal, R., and Larocca, A. (2009). Measuring dynamic oscillations of a small span cable-stayed footbridge: case study using L1 GPS receivers. J. Surv. Eng., 135, 33–37. DOI: 10.1061/(ASCE)0733-9453(2009)135:1(33).
- 54. Shu, Y., Shi, Y., Xu, P. et al. (2017). Error analysis of high-rate GNSS precise point positioning for seismic wave measurement. Adv. Space Res., 59(11), 2691–2713. DOI: 10.1016/j.asr.2017.02.006.
- 55. Sincich, T. (1996). Business Statistics By Example. Prentice- Hall International Editions: USA.
- 56. Soway Tech Limited (2024). LVDT Linear Position Sensors. Soway Tech Limited. Retrieved May 10, 2024, from https://www.sowaytech.com/sdp/302911/4/pd-1125040/20288307-2149358/High_precision_digital_LVDT_probe_with_0_01mm_accu.html.
- 57. Stiros, S., and Psimoulis, P. (2010). Identification of NearShore Wave Characteristics Using Robotic Total Station (RTS). J. Surv. Eng., 136. DOI: 10.1061/(ASCE)SU.1943-5428.0000027.
- 58. Stiros, S., and Psimoulis, P. (2012). Response of a historical short-span railway bridge to passing trains: 3-D deflections and dominant frequencies derived from Robotic Total Station (RTS) measurements. Eng. Struct., 45, 362–371. DOI: 10.1016/j.engstruct.2012.06.029.
- 59. Stiros, S., Psimoulis, P., Moschas, F. et al. (2019). Multi-sensor measurement of dynamic deflections and structural health monitoring of flexible and stiff bridges. Bridge Struct., 15(1–2), 43–51. DOI:10.3233/BRS-190152.
- 60. Tiryakioglu, I. (2012). GNSS Ölçüleri Ile GüneybatıAnadolu’daki Blok Hareketleri Ve Gerilim Alanlarının Belirlenmesi. PhD thesis, Institute of Science,Yıldız Technical University, Istanbul, Turkey.
- 61. Wang, G., Blume, F., Meertens, C. et al. (2012). Performance of High-rate Kinematic GPS During Strong Shaking: Observations from Shake Table Tests and The 2010 Chile Earthquake. J. Geod. Sci., 2(1), 15–30. DOI: 10.2478/v10156-011-0020-0.
- 62. Wang, J. (2015). Research on some research about move relative positioning techniques and method. Atlantis Press, 3(5), 1503–1506. DOI: 10.2991/icmmita-15.2015.277.
- 63. Wells, D.E., Beck, N., Delikaraoglu, D. et al. (1987). Guide To GPS Positioning. Second Edition, Canadian GPS Associates, New Brunswick, Canada.
- 64. Wilson, J.S. (2006). Ten measurements myths. Test Eng Manage, 68(6), 2–3.
- 65. Xu, Y., Brownjohn, J.M.W., Hester, D. et al. (2017). Long-span bridges: Enhanced data fusion of GPS displacement and deck accelerations. Eng. Struct., 147, 639–651. DOI: 10.1016/j.engstruct.2017.06.018.
- 66. Yavasoglu, H., Tari, E., Tüysüz, O. et al. (2011). Determining and modelling tectonic movements along the central part of the North Anatolian Fault (Turkey) using geodetic measurements. J. Geodyn., 51, 339–343. DOI: 10.1016/j.jog.2010.07.003.
- 67. Yigit, C.Ö. (2010). Yüksek Yapıların FarklıSensörler ile Tam Ölçekli Izlenmesi ve Dinamik Parametrelerin Belirlenmesi. Doctoral thesis, Selçuk University, Graduate School of Science and Engineering, Konya, Turkey.
- 68. Yigit, C.O., Coskun, M.Z., Yavasoglu, H. et al. (2016). The potential of GPS Precise Point Positioning method for point displacement monitoring: A case study. Meas., 91, 398–404. DOI:10.1016/j.measurement.2016.05.074.
- 69. Yigit, C.O., El-Mowafy, A., Bezcioglu, M. et al. (2020a). Investigating the effects of ultra-rapid, rapid vs. final precise orbit and clock products on high-rate GNSS-PPP for capturing dynamic displacements. Struct. Eng. Mech., 73, 427–436. DOI: 10.12989/sem.2020.73.4.427.
- 70. Yigit, C.O., El-Mowafy, A., Dindar, A.A. et al. (2020b). Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table. J. Surv. Eng., 147. DOI: 10.1061/(ASCE)SU.1943-5428.0000343.
- 71. Yu, Y.S. , Zou, S., and Whittemore, D. (1993). Non-parametric Trend Analysis of Water Quality Data of Rivers in Kansas. J. Hydro., 150, 61–80. DOI: 10.1016/0022-1694(93)90156-4.
- 72. Yu, J., Zhu, P., Xu, B. et al. (2017). Experimental assessment of high sampling-rate robotic total station for monitoring bridge dynamic responses. Meas., 104, 60–69. DOI: 10.1016/j.measurement.2017.03.014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fff64da3-b2af-4b85-bf05-114d204eb2c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.