PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental validation of a dynamic lumped parameter model of an automotive cabin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this work is to propose a thermal model for predicting the average air temperature inside the passenger cabin of a small-sized car that uses an HVAC system. The adopted model is a lumped parameter model that accounts for nine heat sources acting on the cabin. Additionally, the model presents a methodology for calculating the temperature at the evaporator outlet considering a linear temperature drop between its inlet and outlet as a function of sensitive heat, latent heat, evaporator input temperature, absolute humidity, enthalpy and specific heat. Sixteen experimental tests were con-ducted on a commercial vehicle under various operating conditions to validate the presented model. The maximum average relative deviation between the experimental and theoretical results was 17.73%.
Słowa kluczowe
Rocznik
Strony
119--128
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • Federal University of Minas Gerais, Av. Pres. Antônio Carlos, Belo Horizonte/MG 31270-901, Brazil
  • Federal University of Itajubá, Av.. BPS, Itajubá/MG 37500 903, Brazil
  • Federal University of Minas Gerais, Av. Pres. Antônio Carlos, Belo Horizonte/MG 31270-901, Brazil
autor
  • Federal University of Minas Gerais, Av. Pres. Antônio Carlos, Belo Horizonte/MG 31270-901, Brazil
Bibliografia
  • [1] Orofino, L., Amante, F., Mola, S., Rostagno, M., Villosio, G., & Piu, A. (2007). An integrated approach for air conditioning and electrical system impact on vehicle fuel consumption and performances analysis: DrivEM 1.0. SAE Technical Paper Series. doi:10.4271/2007-01-0762
  • [2] Rugh, J.P., Hovland, V., & Andersen, S.O. (2004). Significant fuel savings and emission reductions by improving vehicle air conditioning. 15th Annual Earth Technologies Forum and Mobile Air Conditioning Summit, April 13-15, Washington D.C. http://www.nrel.gov/vehiclesandfuels/ancillary_loads/pdfs/fuel_savings_ac.pdf [accessed 9 Oct. 2023].
  • [3] Moon, J. H., Lee, J. W., Jeong, C. H., & Lee, S. H. (2016). Thermal comfort analysis in a passenger compartment considering the solar radiation effect. International Journal of Thermal Sciences,107, 77–88. doi: 10.1016/j.ijthermalsci. 2016.03.013
  • [4] Oh, M.S., Ahn, J.H., Kim, D.W., Jang, D.S., & Kim, Y. (2014). Thermal comfort and energy saving in a vehicle compartment using a localized air-conditioning system. Applied Energy, 133, 14–21. doi: 10.1016/j.apenergy.2014.07.089
  • [5] Ahilan, C., Kumanan, S., & Sivakumaran, N. (2010). Design and implementation of an intelligent controller for a split air conditioner with energy saving. Advances in Modelling and Analysis C, 65, 21–40.
  • [6] Shimizu, S., Hara, H., & Asakawa F. (1983). Analysis on air-conditioning heat load of a passenger vehicle. International Journal of Vehicle Design, 4(3), 292–311. doi: 10.1504/IJVD.1983.061317
  • [7] Michalek, D., Gehsat, C., Trapp, R., & Bertram, T. (2005). Hardware-in-the-loop-simulation of a vehicle climate controller with a combined HVAC and passenger compartment model. IEEE/ASME (AIM) International Conference on Advanced Intelligent Mechatronics, 24-28 July. 2, Monterey, USA, 1065–1070.doi: 10.1109/aim.2005.1511151
  • [8] Khayyam, H., Kouzani, A.Z., & Hu, E.J. (2009). Reducing energy consumption of vehicle air conditioning system by an energy management system. IEEE Intelligent Vehicles Symposium, 3-5 June, Xi'an, China, 752–757. doi: 10.1109/IVS.2009.5164371
  • [9] Jha, K.K., Bhanot, V., & Ryali, V. (2013). A simple model for calculating vehicle thermal loads. SAE Technical Paper, 2013-01-0855. doi: 10.4271/2013-01-0855.
  • [10] ASHRAE (2001). ASHRAE Fundamental Handbook. Atlanta,p. 30.
  • [11] Marcos, D., Pino, F.J., Bordons, C., & Guerra, J.J. (2014). The development and validation of a thermal model for the cabin of a vehicle. Applied Thermal Engineering, 66, 646–656. doi:10.1016/j.applthermaleng.2014.02.054
  • [12] Torregrosa-Jaime, B., Bjurling, F., Corberán, J.M., Di Sciullo, F., & Payá, J. (2015). Transient thermal model of a vehicle’s cabin validated under variable ambient conditions. Applied Thermal Engineering, 75, 45–53. doi: 10.1016/j.applthermaleng.2014.05.074
  • [13] Fayazbakhsh, M.A., & Bahrami, M. (2013). Comprehensive modeling of vehicle air conditioning loads using heat balance method. SAE Technical Paper, 2013-01-1507. doi:10.4271/2013-01-1507
  • [14] Wilhelm, L. R. (1976). Numerical calculation of psychrometric properties in SI units. Transactions of the ASABE, 19(2). doi:10.13031/2013.36019
  • [15] Lee, H., Hwang, Y., Song, I., & Jang, K. (2015). Transient thermal model of passenger car’s cabin and implementation to saturation cycle with alternative working fluids. Energy, 90, 1859–1868. doi: 10.1016/j.energy.2015.07.016
  • [16] ASHRAE. (2013). ASHRAE Handbook, Fundamentals. [chapter 15].
  • [17] Selow, J., Wallis, M., Zoz, S., & Wiseman, M. (1997). Towards a virtual vehicle for thermal analysis. SAE Technical Paper Series. doi: 10.4271/971841
  • [18] Ramsey, D., Boulon, L., & Bouscayrol, A. (2021). Modeling of an EV air conditioning system for energetic studies in summer. IEEE Vehicle Power and Propulsion Conference (VPPC), 25-28 October, Gijon, Spain. doi: 10.1109/VPPC53923.2021.9699119
  • [19] Liu, Y., & Zhang, J. (2021). Electric vehicle battery thermal and cabin climate management based on model predictive control. J. Mech. Des. Trans. ASME, 143, 1–8. doi: 10.1115/1.4048816
  • [20] Delgado, M.L., Jiménez-Hornero, J.E., & Vázquez F. (2023). Design, implementation and validation of a hardware-in-the-loop test bench for heating systems in conventional coaches. Applied Sciences, 13(4), 2212. doi: 10.3390/app13042212
  • [21] Paulke, S., & Ellinger, M. (2007). Air conditioning cabin simulation with local comfort rating of passengers. 2nd European Workshop on Mobile Air Conditioning and Auxiliary Systems – ATA /CRF, 29-30 November, Torino, Italy.
  • [22] Singh, S., & Abbassi, H. (2018). 1D/3D transient HVAC thermal modeling of an off-highway machinery cabin using CFD-ANN hybrid method. Applied Thermal Engineering, 135, 406–417.doi: 10.1016/j.applthermaleng.2018.02.054
  • [23] Warey, A., Kaushik, S., Khalighi, B., Cruse, M., & Venkatesan, G. (2020). Data-driven prediction of vehicle cabin thermal comfort: using machine learning and high-fidelity simulation results. International Journal of Heat and Mass Transfer, 148, 119083.doi: 10.1016/j.ijheatmasstransfer.2019.119083
  • [24] Horvath, H. (1991). Spectral extinction coefficients of background aerosols in Europe, North and South America: A comparison. Atmospheric Environment. Part A, General Topics, 25, 725–732. doi: 10.1016/0960-1686(91)90071-E
  • [25] Iqbal, M. (1983). An Introduction to Solar Radiation. Academic Press Canada, Ontario. doi: 10.1111/jmp.12384
  • [26] ASHRAE. (1999). Handbook Fundamentals, SI. Atlanta.
  • [27] Wu, J., Jiang, F., Song, H., Liu, C., & Lu, B. (2017). Analysis and validation of transient thermal model for automobile cabin. Applied Thermal Engineering, 22, 91–102. doi: 10.1016/ j.applthermaleng.2017.03.084
  • [28] Tong, Z., & Liu, H. (2020). Modeling in-vehicle VOCs distribution from cabin interior surfaces under solar radiation. Sustainability, 12(14), 5526. doi:10.3390/su12145526
  • [29] Creder, H. (2004). INSTALAÇÕES DE AR CONDICIONADO. Livros Técnicos e Científicos Editora S.A. (LCT), Rio de Janeiro,2004. [in Portuguese]
  • [30] Arndt, M., & Sauer, M. (2004). Spectroscopic carbon dioxide sensor for automotive applications. Sensors 2004 IEEE, 1, 24-27 October, Vienna, Austria, pp. 252–255. doi: 10.1109/icsens.2004.1426149
  • [31] Singh, A.K., Singh, H., Singh, S.P., & Sawhney, R.L. (2002). Numerical calculation of psychrometric properties. Building and Environment, 37(4), 415–419. doi: 10.1016/S0360-1323(01)00032-4
  • [32] Thomson, G.W.M. (1946). The Antoine equation for vapor-pressure. Data. Chemical Reviews, 38(1), 1–39. doi: 10.1021/cr60119a001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffecbbcb-1fdc-4cf7-b66b-83e056977f9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.