PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Odbiór bodźców środowiskowych przez glony Characeae sygnalizowany za pomocą ultrasłabej luminescencji

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Reception of environmental stimuli by Characeae algae manifested by ultraweak luminescence
Języki publikacji
PL
Abstrakty
EN
Protecting the environment requires ensuring such conditions that organisms living in it did not suffer permanent damage to their structures and life functions. This also applies to algae living in the aquatic environment. Some species of water flora especially quickly react to negative stimuli arriving from the environment. Their reactions to experienced stress may be a subtle criterion for assessing the condition of aquatic environment. To this kind of plants belong Chara, which are bioindicators of water quality. Their response to applied environmental stimuli is rapid changes of the electrical parameters of the cell membrane. Our research shows that there is also a change in the intensity of ultraweak luminescence (UWL) generated by these plants. UWL is a phenomenon that continuously accompanies processes occurring in living cells and its intensity is less than the threshold sensitivity of the human eye. The method of measurement of this little known way of Chara's response to environmental stimuli has the advantage that it is completely non-invasive for the test material. Non-invasiveness is due to the fact that the radiation emitted from the samples is measured outside the cell membrane separating the living matter from the surrounding environment. In our study, after exposure to a selected stimulus, three types of responses of plant cells were observed: 1) - after a temporary increase of UWL, there is a return to the level of light corresponding to undisturbed homeostasis (e.g. when ascorbic acid is added to the environment); 2) - after a temporary increase in the UWL, the emission of photons slightly falls and stabilizes at a new higher level of illumination (when the stress stimulus is e.g. lead acetate, the emission intensity is 2.2 times larger than in the beginning); 3) - after a sudden and significant increase of UWL, the high emission level is maintained for many hours (e.g. after adding sucrose follows a 20-fold increase of UWL). UWL curves obtained in our experiments correlate with the changes of entropy corresponding to the disturbance of homeostasis in individual cases, depending on the applied stimulus. Respectively: for 1) - an increase of entropy is temporary and is followed by a return to values before the application of the stimulus, 2) - a lasting change occurs, which consists in an increase of entropy to a new fixed level, 3) - change in entropy is so large that its value exceeds the so-called point of no return, which means that the disorder of homeostasis leads to cell death. The application of luminescence imaging technique Single Photon Counting Imaging (SPCI) to the test cells have revealed that the emission of photons from different parts of the plant has a different intensity. When the plant suffered mechanical damage by cutting pseudoleaves, the emission from the damaged sites increased dramatically. This observation allows the damage to be located. Thanks to SPCI technique, it is also possible to track over time any repair processes. The clear differentiation of UWL kinetics leads to the conclusion that monitoring its intensity can be a good research tool in environmental protection. It makes it possible to determine whether chemicals found in the aquatic environment are harmful to a given species of plants. It can be also assessed whether the degree of the harm threatens the entire population with extinction. Thus, the presented method can be used as an ecotoxicity test.
Słowa kluczowe
Rocznik
Tom
Strony
380--392
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Politechnika Lubelska
autor
  • Politechnika Lubelska
autor
  • Politechnika Lubelska
Bibliografia
  • 1. Beardall J., Young E., Roberts S.: Aproaches for determining phytoplankton nutrient limitation. Aquat. Sci., 63, 44–69 (2001).
  • 2. Borc R., Dudziak A., Jaśkowska A.: Ultraweak luminescence of the Characeae plants under the circumstances of cyclical changes in temperature. Cur. Top. Biophys., 34, 37–44 (2011).
  • 3. Bulich A.A.: Use of luminescence bacteria for determining toxicity in aquatic environments. W: Aquatic Toxicology. (Markings L.L., Kimerle R.A., eds.) ASTM SHTP 667. American Society for Testing and Materials, Philadelphia, 98–106 (1979).
  • 4. Cohen S., Popp F.A.: Biophoton emission of the human body. J. Photochem. Photobiol. B, 40, 187–189 (1997).
  • 5. Deby-Dupont G., Deby C., Mouithys-Mickalad A., Hoebeke M., Mathy- Hartert M., Jadoul L., Vandenberghe A., Lamy M.: The antibiotic ceftazidime is a singlet oxygen quencher as demonstrated by ultra-weak chemiluminescence and by inhibition of AAP consumption. Biochim. Biophys. Acta, 1379, 61–68 (1998).
  • 6. Floryszak-Wieczorek J., Górski Z., Arasimowicz-Jelonek M.: Functional imaging of biophoton responses of plants to fungal infection. Eur. J. Plant Pathol., 130, 249–258 (2011).
  • 7. Fulladosa E., Murat J-C., Bollinger J-C., Villaescusa I.: Adverse effects of organic arsenical compounds towards Vibrio fischeri bacteria. Sci. Total Environ., 377, 207–213 (2007).
  • 8. Gędziorowska D.: Izolacja bałtyckich glonów jednokomórkowych i uzyskanie kultur aksenicznych dla badań fizjologiczno-biochemicznych. W: Studia i Materiały Oceanologiczne, PAN, 41, 222–226 (1983).
  • 9. Godlewski M., Gogol P., Kwiecińska T., Laszczka A., Szczęśniak-Fabiańczyk B., Wierzuchowska D.: Zastosowanie pomiaru emisji fotonów do oceny wartości biologicznej nasienia. Biotechnologia, 1, 116–128 (2003).
  • 10. Inagaki H., Imaizumi T., Wang G., Tominaga T., Kato K., Iyozumi H.,Nukui H.: Spontaneous ultraweak photon emission from rice (Oryza sativa L.) and paddy weeds treated with a sulfonylurea herbicide. Pestic. Biochem. Physiol., 89, 158–162 (2007).
  • 11. Itoh Y., Amano T., Shimizu T., Hashimoto J., Kubo A., Fukuuchi Y.: Single-photon emission computed tomography image of benzodiazepine receptors in a patient with Creutzfeldt-Jacob disease. Intern. Med., 37, 896–100 (1998).
  • 12. Jaśkowska A., Borc R., Milczarek I., Dudziak A., Śpiewla E.: Kinetics studies of ultraweak luminescence induced by ascorbic acid in Characeae cells and their structures. Luminescence, 16, 51–56 (2001).
  • 13. Juliastuti S.R., Baeyens J., Creemers C.: Inhibition of nitrification by heavy metals and organic compounds: the ISO 9509 test. Environ. Eng. Sci., 20, 79–90 (2003).
  • 14. Mantis I., Voutsa D., Samara C.: Assessment of the environmental hazard from municipal and industrial wastewater treatment sludge by employing chemical and biological methods. Ecotoxicol. Environ. Saf., 62, 397–407 (2005).
  • 15. Murkowski A., Skórska E.: Comparison of phytotoxicity of lead and tin organic compounds by means of luminescence methods. Acta Agrophys. 11, 131–140 (2008).
  • 16. Pawłowski L.: Sustainability and Global Role of Heavy Metals. Problems of Sustainable Development, 6, 59–64 (2011).
  • 17. Piotrowicz R.: Twardowodne oligo– i mezotroficzne zbiorniki z podwodnymi łąkami ramienic Charetea. W: Poradniki ochrony siedlisk i gatunków Natura 2000 – podręcznik metodyczny, (Herbich J. red.) Ministerstwo Środowiska, 2, 46–56 (2004).
  • 18. Prokowski Z.: Nowe sposoby pomiaru parametrów luminescencyjnych glonów jako wskaźników zmian w środowisku. Rozprawa habilitacyjna. Wyd. Akademii Rolniczej, Szczecin. 2002.
  • 19. Seders L.A., Shea C.A., Lemmon M.D., Maurice P.A., Talley J.W.: LakeNet: an integrated sensor network for environmental sensing in lakes. Environ. Eng. Sci., 24, 183–191 (2007).
  • 20. Sławiński J., Ezzahir A., Godlewski M., Kwiecińska T., Rajfur Z., Sitko D., Wierzuchowska D.: Stress-induced photon emission from perturbed organisms. Experentia, 48, 1041–1058 (1992).
  • 21. Sukhatme G.S., Dhariwal A., Zhang B., Oberg C., Stauffer B., Caron D.A.: Design and development of a wireless robotic networked aquatic microbial observing system. Environ. Eng. Sci., 24, 205–215 (2007).
  • 22. Trump B.F., Arstila A.U.W.: Principles of pathobiology. (La Via M.F., Hill R.B., eds.), Oxford University Press, London. 1971.
  • 23. Tudisco S., Musumeci F., Scordino A., Privitera G.: Advanced research equipment for fast ultraweak luminescence analysis. Rev. Sci. Instrum., 74,4485–4490 (2003).
  • 24. Wang Y-y., Wang J-g., Ma Y-q., Su Z., Zhao K-j., Zhang Z-l., Zheng Y-y., Liu Ch-x.: Kinetics of low level chemiluminescence from plant leaf smoked by air pollutants. J. Environ. Sci., 10, 43–48 (1998).
  • 25. Zacchini M., Rea E., Tullio M., de Agazio M.: Increased antioxidative capacity in maize calli during and after oxidative stress induced by a long lead treatment. Plant Physiol. Biochem., 41, 49–54 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffe9e2ed-ac91-4095-9921-603414284617
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.