PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Black sand properties in beach-dune system, Patea Beach, North Island, New Zealand

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study focuses on sand grain properties in different parts of a beach-dune system built entirely of heavy mineral particles. These properties are related to: (1) resistance of particular minerals to weathering and abrasion, (2) hydraulic sorting in the swash zone, and (3) aeolian sorting during grain transport inland from the upper beach. The main waterlain and windlain sand properties depend on settling velocity which results from grain density (reflecting grain mineralogy), size, shape and roundness. The study was performed on the beach and dunes at Patea on the west coast of the North Island of New Zealand, which are comprised of heavy minerals assemblage containing a ferromagnetic (dominated by titanomagnetite) and non-ferromagnetic (mainly pyroxene and amphibole) fractions. The result demonstrates that three zones of different sand properties can be distinguished: (1) a lower swash zone dominated by non-ferromagnetic, larger and more angular particles which are carried back from the upper swash zone down the foreshore by the backwash; (2) an uppermost swash zone and beach with almost 100% of ferromagnetic, smaller and more rounded particles deposited at the back of the beach by the uprush, which during high tide and storms can reach the cliff toe, and can be reworked by wind; and (3) a climbing dune composed of a more poorly sorted mixture of non- and ferromagnetic particles. In terms of both mineralogy and grain size and shape, the dune sand is less uniform than the beach sand. Aeolian segregation resulted here in sand textural features opposite to those found in dune sands composed of light minerals. The results highlight the density-dependent variability of grain size and shape of beach-dune deposits consisting of only heavy minerals, and broaden our understanding of mechanisms of sedimentary processes which is particularly important when reconstructing older sedimentary successions.
Rocznik
Strony
art. no. 35
Opis fizyczny
Bibliogr. 99 poz., fot., rys., tab., wykr.
Twórcy
  • University of Warsaw, Faculty of Geography and Regional Studies, Department of Geomorphology, Krakowskie Przedmieście 30, 00-927 Warszawa, Poland
autor
  • University of Otago, School of Geography, PO Box 56, Dunedin 9054, New Zealand
  • Adam Mickiewicz University in Poznań, Institute of Geology, Krygowskiego 12, 61-680 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Institute of Geology, Krygowskiego 12, 61-680 Poznań, Poland
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Bibliografia
  • 1. Abuodha, J.O.Z., 2003. Grain size distribution and composition of modern dune and beach sediments, Malindi Bay coast, Kenya. Journal of African Earth Sciences, 36: 41-54.
  • 2. Achayra, B.C., Nayak, B.K., Das, S.K., 2009. Heavy mineral placer sand deposits of Kontiagarh area, Ganjam District, Orissa, India. Resource Geology, 59: 388-399.
  • 3. Anderson, R.S., Haff, P.K., 1988. Simulation of eolian saltation. Science, 241: 820-823.
  • 4. Angusamy, N., Dajkumar Sahayam, J., Suresh Gandhi, M., Victor Rajamanickam, G., 2005. Coastal placer deposits of central Tamil Nadu, India. Marine Georesources and Geotechnology, 23: 137-174.
  • 5. Badesab, F., von Dobeneck, T., Bryan, K.R., Müller, H., Briggs, R.M., Frederichs, T., Kwoll, E., 2012. Formation of magnetite-enriched zones in and offshore of a mesotidal estuarine lagoon: An environmental magnetic study of Tauranga Harbour and Bay of Plenty, New Zealand. Geochemistry, Geophysics, Geosystems, 13: Q06012.
  • 6. Bagnold, R.A., 1941. The Physics of Blown Sand and Desert Dunes. Methuen, London.
  • 7. Bagnold, R.A., 1966. An approach to the sediment transport problem from general physics. USGS Professional Paper, 442-J: 1-37.
  • 8. Bartzke, G., Schmeeckle, M.W., Huhn, K., 2018. Understanding heavy mineral enrichment using a three-dimensional numerical model. Sedimentology, 65: 561-581.
  • 9. Bauer, B.O., Davidson-Arnott, R.G.D., 2002. A general framework for modelling sediment supply to coastal dunes including wind angle, beach geometry and fetch effects. Geomorphology, 49: 89-108.
  • 10. Berner, R.A., Schott, J., 1982. Mechanism of pyroxene and amphibole weathering; II. Observations of soil grains. American Journal of Science, 282: 1214-1231.
  • 11. Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26: 1237-1248.
  • 12. Brathwaite, R.L., Gazley, M.F., Christie, A.B., 2017. Provenance of titanomagnetite in ironsands on the west coast of the North Island, New Zealand. Journal of Geochemical Exploration, 178: 23-34.
  • 13. Brathwaite, R.L., Christie, A.B., Gazley, M.F., 2021. Stratigraphy, provenance and localisation of the titanomagnetite placer at Waikato North Head, South Auckland, New Zealand. Mineralium Deposita, 56: 343-362.
  • 14. Briggs, R.M., Laurent, J.C., Hume, T.M., Swales, A., 2009. Provenance of black sands on the west coast, North Island, New Zealand. Proceedings of the 42nd Aus IMM New Zealand Branch Annual Conference: 41-50.
  • 15. Bryan, K.R., Robinson, A., Briggs, R.M., 2007. Spatial and temporal variability of titanomagnetite placer deposits on a predominantly black sand beach. Marine Geology, 236: 45-59.
  • 16. Carter, L., 1980. Ironsand in continental shelf sediments off western New Zealand - a synopsis. New Zealand Journal of Geology and Geophysics, 23: 455-468.
  • 17. Cascalho, J.P.V., Taborda, R.P.M., 2006. Heavy mineral placer formation an example from Algarve, Portugal. Journal of Coastal Research, SI 39: 246-249.
  • 18. Cascalho, J., Costa, P.J.M., Gelfenbaum, G., La Selle, S., Jaffe, B., 2020. Selective sediment transport during Hurricane Sandy on Fire Island (New York, USA). Journal of Sedimentary Research, 90: 269-285.
  • 19. Cockayne, L., 1909. Report on the Sand Dunes of New Zealand: Their Geology and Botany, with their Economic Bearing. Department of Lands, Wellington, New Zealand.
  • 20. Cockayne, L., 1911. Report on the Sand Dunes of New Zealand: Their Geology, Botany, and Reclamation. Department of Lands, Wellington, New Zealand.
  • 21. Costa, P.J.M., Andrade, C., Dawson, A.G., Mahaney, W.C., Freitas, M.C., Paris, R., Taborda, R., 2012. Microtextural characteristics of quartz grains transported and deposited by tsunamis and storms. Sedimentary Geology, 275-276: 55-69.
  • 22. Cox, S.H., 1881. Thames and Coromandel District. Report of Geological Survey of New Zealand, 40-1.
  • 23. Davidson-Arnott, R.G.D., 2010. Introduction to Coastal Processes and Geomorphology. Cambridge University Press, Cambridge.
  • 24. Dietrich, W.E., 1982. Settling velocity of natural particles. Water Resource Research, 18: 1615-1626.
  • 25. Dłużewski, M., 2013. Morphology and morphodynamics of barchans in tropical regions (based on Sahara) (in Polish with English summary). Wyd. WGiSR UW, Warszawa.
  • 26. Edgett, K.S., Lancaster, N., 1993. Volcaniclastic aeolian dunes: Terrestrial examples and application to Martian sands. Journal of Arid Environments, 25: 271-297.
  • 27. Folk, R.L., 1978. Angularity and silica coatings of Simpson Desert sand grains, Northern Territory Australia. Journal of Sedimentary Petrology, 48: 611-624.
  • 28. Folk, R.L., Ward, W.C., 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27: 3-26.
  • 29. Fryberger, S.G., Dean, G., 1979. Dune forms and wind regime. U.S. Geological Survey, Washington, Professional Paper, 1052: 137-169.
  • 30. Gorman, R.M., Bryan, K.R., Laing, A.K., 2003. A wave hindcast for the New Zealand region - deep-water wave climate. New Zealand Journal of Marine and Freshwater Research, 37: 589-612.
  • 31. Goudie, A.S., Watson, A., 1981. The shape of desert sand grains. Journal of Arid Environments, 4: 185-190.
  • 32. Gow, A.G., 1967. Petrographic studies of iron sands and associated sediment near Hawera, South Taranaki. New Zealand Journal of Geology and Geophysics, 10: 675-696.
  • 33. Gow, A.J., 1968. Petrographic and petrochemical studies of Mt Egmont andesites. New Zealand Journal of Geology and Geophysics, 11: 166-190.
  • 34. Garzanti, E., Ando, S., Vezzoli, G., 2008. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters, 273: 138-151.
  • 35. Hand, B.M., 1967. Differentiation of beach and dune sands, using settling velocities of light and heavy minerals. Journal of Sedimentary Petrology, 37: 514-520.
  • 36. Hartmann, D., 1991. Cross-shore selective sorting processes and grain-size distributional shape. Acta Mechanica, 2: 49-63.
  • 37. Houser, C., 2009. Synchronization of transport and supply in beach-dune interaction. Progress in Physical Geography, 33: 733-746.
  • 38. Hume, T., Ovenden, R., MacDonald, I., 2012. Coastal stability in the South Taranaki Bight - Phase 1. Historical and present day shoreline change. NIWA Client Report No HAM2012-083.
  • 39. Jackson, P.S., Hunt, J.C.R., 1975. Turbulent wind flow over a low hill. The Quarterly Journal of the Royal Meteorological Society, 101: 929-955.
  • 40. Kasper-Zubillaga, J.J., Carranza-Edwards, A., Morton-Bermeaet, O., 2008. Heavy minerals and rare earth elements in coastal and inland dune sand of Vizcaino Desert, Baja California Peninsula, Mexico. Marine Georesources and Geotechnology, 2: 172-188.
  • 41. Kear, D., 1965. Geology of New Zealand's ironsand resources. Proceedings of the 8th Commonwealth Mining and Metallurgical Congress, New Zealand Section, paper 219.
  • 42. Kear, D., 1979. Geology of ironsand resources of New Zealand. DSIR, Wellington.
  • 43. Khalaf, F.L., Gharib, I.M., 1985. Roundness parameters of quartz sand grains of recent aeolian sand deposits in Kuwait. Sedimentary Geology, 45: 137-158.
  • 44. Komar, P.D., 1987. Selective grain entrainment by a current from a bed of mixed sizes: a reanalysis. Journal of Sedimentary Petrology, 57: 203-211.
  • 45. Komar, P.D., 1989. Physical processes of waves and currents and the formation of marine placers. CRC Critical Reviews in Aquatic Sciences, 1: 393-423.
  • 46. Komar, P.D., 2007. The entrainment, transport and sorting of heavy minerals by waves and currents. Developments in Sedimentology, 58: 3-48.
  • 47. Komar, P.D., Reimers, C.E., 1978. Grain shape effects on settling rates. Journal of Geology, 86: 193-209.
  • 48. Komar, P.D., Wang, C., 1984. Processes of selective grain transport and the formation of placers on beaches. Journal of Geology, 92: 637-655.
  • 49. Krinsley, D.H., Donahue, J., 1968. Environmental interpretation of sand grain surface textures by electron microscopy. GSA Bulletin, 79: 743-748.
  • 50. Krinsley, D.H., Doornkamp, J.C., 1973. Atlas of Quartz Sand Surface Textures. Cambridge University Press, Cambridge.
  • 51. Krinsley, D.H., McCoy, F., 1978. Aeolian quartz sand and silt. In: Scanning Electron Microscopy in the Study of Sediments - a Symposium Geo Abstracts (ed. W.B. Whalley): 249-260. Norwich.
  • 52. Kuenen, Ph.H., 1960. Experimental abrasion. 4. Eolian action. Journal of Geology, 68: 427-449.
  • 53. Kuenen, Ph.H., 1964. Experimental abrasion: 6. Surf action. Sedimentology, 3: 29-43.
  • 54. Li, M.Z., Komar, P.D., 1992. Selective entrainment and transport of mixed size and density sands: experiments simulating the formation of black-sand placers. Journal of Sedimentary Petrology, 62: 584-590.
  • 55. MacCarthy, G.R., 1935. Eolian sands, a comparison. American Journal of Science, 30: 81-95.
  • 56. Mahaney, W.C., 2002. Atlas of Sand Grain Surface Textures and Applications. Oxford University Press.
  • 57. Mange, M.A., Maurer, H.F.W., 1992. Heavy Minerals in Colour. Chapman & Hall, London.
  • 58. Mattox, R.B., 1955. Eolian shape sorting. Journal of Sedimentary Petrology, 25: 111-114.
  • 59. Mazzullo, J., Sims, D., Cunningham, D., 1986. The effects of eolian sorting and abrasion upon the shapes of fine quartz sand grains. Journal of Sedimentary Petrology, 56: 45-56.
  • 60. McGlone, M.S., Neal, V.E., Pillans, B.J., 1984. Inaha Terrace deposits: a late Quarternary terrestrial record in South Taranaki, New Zealand. New Zealand Journal of Geology and Geophysics, 27: 35-49.
  • 61. Mead, S., 2013. Potential effects of Trans-Tasman Resources Mining Operations on surfing breaks in the Southern Taranaki Bight. Report for NIWA Taihoro Nukurangi, eCoast Ltd.
  • 62. Morgan, P.G., Gibson, W., 1927. The geology of the Egmont subdivision. Bulletin of Geological Survey of New Zealand: 1-29.
  • 63. Morphologi G3 User Manual 0140, 2008. Malvern Instruments Ltd., Worcestershire, Great Britain.
  • 64. Muckersie, C., 1989. The location and orientation of coastal parabolic sand dunes in New Zealand. MSc. Thesis, Massey University, Palmerston North.
  • 65. Neall, V.E., Stewart, R.B., Smith, I.E.M., 1986. History and petrology of the Taranaki volcanoes. Royal Society of New Zealand Bulletin, 23: 251-263.
  • 66. Nicholson, D.S., Fyfe, H.E., 1958. Borehole survey of North Island ironsands from New Plymouth to Kaipara Harbour. New Zealand Journal of Geology and Geophysics, 1: 617-634.
  • 67. Pickerill, R.A., Mitchel, J.S., 1979. Ocean wave characteristic around New Zealand. New Zealand Journal of Marine and Freshwater Research, 13: 501-520.
  • 68. Pillans, B.J., 1990. Late Quaternary marine terraces, south Taranaki-Wanganui. New Zealand Geological Survey miscellaneous series map 18.
  • 69. Piscioneri, N., Smyth, T.A.G., Hesp, P.A., 2019. Flow dynamics over a foredune scarp. Earth Surface Processes and Landforms, 44: 1064-1076.
  • 70. Poché, D., Goodell, H.G., 1975. Influence of grain shape on the selective sorting of sand by waves. GSA Memoir, 142: 137-148.
  • 71. Pupienis, D., Buynevich, I.V., Bitinas, A., 2011. Distribution and significance of heavy-mineral concentrations along the southeast Baltic Sea coast. Journal of Coastal Research, SI 64: 1984-1988.
  • 72. Rao, C.B., 1957. Beach erosion and concentration of heavy mineral sands. Journal of Sedimentary Petrology, 27: 143-147.
  • 73. Reichelt, G., 1961. Über Schotterformen und Rundungsgradanalyse als Feldmethode. Petermanns Geographische Mitteilungen, 105: 15-24.
  • 74. Schmidt, R.G., Asad, S.A., 1962. Beach placers containing radioactive minerals, Bay of Bengal, East Pakistan. U.S. Geological Survey Research, 450: 12-14.
  • 75. Schuiling, R.D., de Meijer, R.J., Riezebos, H.J., Scholten, M.J., 1985. Grain size distribution of different minerals in a sediment as a function of their specific density. Geologie en Mijnbouw, 64: 199-203.
  • 76. Shepard, F.P., Young, R., 1961. Distinguishing between beach and dune sands. Journal of Sedimentary Petrology, 31: 196-214.
  • 77. Shepherd, M., Hesp, P., 2003. Sandy barriers and coastal dunes. In: The New Zealand Coast, Te Tai Aotearoa (eds. J.R. Goff, S.L. Nichol and H.L. Rouse): 163-189. Dunmore Press, New Zealand.
  • 78. Shields, A., 1936. Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilungen der Preussischen Versuchsanstalt für Wasserbau und Schiffbau, 26.
  • 79. Slingerland, R., 1984. Role of hydraulic sorting in the origin of fluvial placers. Journal of Sedimentary Petrology, 54: 137-150.
  • 80. Slingerland, R., Smith, N.D., 1986. Occurrence and formation of water-laid placers. Annual Review of Earth and Planetary Sciences, 14: 113-147.
  • 81. Soleimanian, M., Kilanehei, F., Memarpour, M., 2019. Comparison of wind speed-up over escarpments derived from numerical modelling and wind-loading codes. Journal of Civil Engineering, 3: 75-84.
  • 82. Stewart, R.B., Price, R.C., Smith, I.E.M., 1996. Evolution of high-Karc magma, Egmont volcano, Taranaki, New Zealand: evidence from mineral chemistry. Journal of Volcanology and Geothermal Research, 74: 275-295.
  • 83. Summerhayes, C.P., 1967. Marine environments of economic mineral deposition around New Zealand: a review. New Zealand Journal of Marine and Freshwater Research, 1: 267-282.
  • 84. Szerakowska, S., Woronko, B., Sulewska, M.J., Oczeretko, E., 2018. Spectral method as a tool to examine microtextures of quartz sand-sized grains. Micron, 110: 36-45.
  • 85. Szmańda, J.B., Witkowski, K., Chmielowska, D., Smolska, E., Szwarczewski, P., 2018. Analiza graniformametryczna obtoczenia ziaren kwarcu w świetle parametrów uzyskiwanych aparatem Morphologi G3 (in Polish). In: Geneza, litologia i stratygrafia utworów czwartorzędowych (eds. A. Kostrzewski, A. Stach and M. Majewski), VII: 191-195. IGIG UAM, Poznań.
  • 86. Thomas, D.S.G., 1987. The roundness of aeolian quartz sand grains. Journal of Sedimentary Petrology, 52: 149-153.
  • 87. Thomson, J.A., 1917. The Hawera series or the so-called “Drift Formation” of Hawera. Transactions and Proceedings of the Royal Society of New Zealand, 49: 414-417.
  • 88. Trask, C.B., Hand, B.M., 1985. Differential transport of fall-equivalent sand grains, Lake Ontario, New York. Journal of Sedimentary Petrology, 55: 226-234.
  • 89. Trenhaile, A.S., Van der Nol, L.V., La Valle, P.D., 1996. Grain roundness and beach sorting. Journal of Coastal Research, 12: 1017-1023.
  • 90. Turner, M.B., Cronin, S.J., Bebbington, M., Smith, I.E.M., Stewart, R.B., 2011. Integrating records of explosive and effusive activity from proximal and distal sequences: Mt. Taranaki, New Zealand. Quaternary International, 246: 364-373.
  • 91. Velbel, M.A., 2007. Surface textures and dissolution processes of heavy minerals in the sedimentary cycle: examples from pyroxenes and amphiboles. Developments in Sedimentology, 58: 113-150.
  • 92. Vos, K., Vandenberghe, N., Elsen, J., 2014. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Science Reviews, 128: 93-104.
  • 93. Wiggs, G.F.S., 1993. Desert dune dynamics and the evaluation of shear velocity: an integrated approach. Geological Society Special Publications, 72: 37-48.
  • 94. Willets, B., 1983. Transport by wind of granular materials of different grain shapes and densities. Sedimentology, 30: 669-679.
  • 95. Willets, B.B., Rice, M.A., Swaine, S.E., 1982. Shape effects in aeolian grain transport. Sedimentology, 19, 409-417.
  • 96. Williams, S.H., 1964. Some aspects of the aeolian saltation load. Sedimentology, 3: 257-287.
  • 97. Winkelmolen, A.M., 1971. Rollability, a functional shape property of sand grains. Journal of Sedimentary Petrology, 41: 703-714.
  • 98. Wu, W., Wang, S.S.Y., 2006. Formulas for sediment porosity and settling velocity. Journal of Hydraulic Engineering, 132: 858-862.
  • 99. Zernack, A.V., Price, R.C., Smith, I.E.M., Cronin, S.J., Stewart, R.B., 2012. Temporal evolution of high-K andesitic magmatic system: Taranaki Volcano, New Zealand. Journal of Petrology, 53: 325-363.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffe03579-717d-4a6e-ad11-8ee181a76b9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.