PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational analysis of pem fuel cell under different operating conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
PEM fuel cells are one of the most promising sources of electrical energy and also have interesting properties. This research is purely theoretical and based on ANSYS Fluent software. Thus, the next step of the research should be the comparison of the solutions to other models and experimental results. The PEM fuel cell can be used as an energy source in the near future in a much more common way, although there are few modifications required, such as increasing efficiency and reducing production costs. In general, a three-dimensional steady-state model of the polymer electrolyte membrane fuel cell implemented in Fluent was used to study a single channel flow inside such a PEMFC. The analysis concerns an aspect, that seems to be overlooked in this type of analysis, namely the influence of the substrate flow rate on the quality and efficiency of the chemical reaction, and thus on the value of the generated current for a given voltage. It is clearly visible that there is a rather narrow range in the amount of hydrogen fuel fed that is optimal for a given fuel cell. Such theoretical research is very useful and very much needed to design a new PEM fuel cells, utilizing Computational Fluid Dynamics (CFD) tool to statically monitor its performance for different boundary conditions.
Słowa kluczowe
Rocznik
Strony
26--38
Opis fizyczny
Bibliogr. 21 poz., fig., tab.
Twórcy
  • Polish Air Force University, General Education Department, Dęblin, Poland
  • Polish Air Force University
Bibliografia
  • [1] Ahmadi, N., & Rostami, S. (2019). Enhancing the performance of polymer electrolyte membrane fuel cell by optimizing the operating parameter. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 220. https://doi.org/10.1007/s40430-019-1720-0
  • [2] Akhtar, N., & Kerkhof, P. (2011). Effect of channel and rib width on transport phenomena within the cathode of a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 36(9), 5536-5549. https://doi.org/10.1016/j.ijhydene.2011.02.039
  • [3] Albarbar, A., & Alrweq, M. (Eds.). (2018). Proton exchange membrane fuel cells: Design, modelling and performance assessment techniques. Springer.
  • [4] ANSYS, Ins.. (2022). Fluent Theory Guide. http://www.ansys.com
  • [5] ANSYS, Ins.. (2022). Fluent Users’s Guide. http://www.ansys.com
  • [6] Askaripour, H. (2019). Effect of operating conditions on the performance of a PEM fuel cell. International Journal of Heat and Mass Transfer, 144(2019), 118705. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118705
  • [7] Cheng, Z., Luo, L., Huang, B., & Jian, O. (2021). Effect of humidification on distribution and uniformity of reactants and water content in PEMFC. International Journal of Hydrogen Energy, 46(52), 26560-26574. https://doi.org/10.1016/j.ijhydene.2021.05.129
  • [8] Falcão, D. S., Gomes, P. J., Oliveira, V. B., Pinho, C., & Pinto, A. (2011). 1D and 3D numerical simulations in PEM fuel cells. International Journal of Hydrogen Energy, 36(19), 12486-12498. https://doi.org/10.1016/j.ijhydene.2011.06.133
  • [9] Haddad, D., Oulmi, K., Benmoussa, H., Aouachria, Z., & Youcef, S. (2015). Modeling of heat yransfer in the PEMFC: Velocity inlet and current density effect. In I. Dincer, C. Colpan, O. Kizilkan & M. Ezan (Eds.), Progress in Clean Energy (pp. 463–473). Springer.
  • [10] Hinaje, M., Raël, S., Caron, J. P., & Davat, B. (2012). An innovating application of PEM fuel cell: Current source controlled by hydrogen supply. International Journal of Hydrogen Energy, 37(17), 12481-12488. https://doi.org/10.1016/j.ijhydene.2012.05.153
  • [11] Khalil, Y. F. (2018). Science-based framework for ensuring safe use of hydrogen as an energy carrier and anemission-free transportation fuel. Process Safety and Environmental Protection, 117, 326–340. https://doi.org/10.1016/j.psep.2018.05.011
  • [12] Kim, Y. B. (2012). Study on the effect of humidity and stoichiometry on the water saturation of PEM fuel cells. International Journal of Energy Research, 36(4), 509-522. https://doi.org/10.1002/er.1845
  • [13] Liu, Q., Lan, F., Chen, J., Zeng, C., & Wang, J. (2022). A review of proton exchange membrane fuel cell water management: Membrane electrode assembly. Journal of Power Sources, 517, 230723. https://doi.org/10.1016/j.jpowsour.2021.230723
  • [14] Liu, Y., Tu, Z., & Chan, S. H. (2022). Performance enhancement in a H2/O2 PEMFC with dual-ejector recirculation. International Journal of Hydrogen Energy, 47(25), 12698-12710. https://doi.org/10.1016/j.ijhydene.2022.02.023
  • [15] Pei, P., Ouyang, M., Feng, W., Lu, L., Huang, H., & Zhang, J. (2006). Hydrogen pressure drop characteristics in a fuel cell stack. International Journal of Hydrogen Energy, 31(3), 371-377. https://doi.org/10.1016/j.ijhydene.2005.08.008
  • [16] Qin, Z., Huo, W., Bao, Z., Tongsh, Ch., Wang, B., Du, Q., & Jiao, K. (2022) Alternating flow field design improves the performance of proton exchange membrane fuel cells. Advanced Science, 10(4), 2205305. https://doi.org/10.1002/advs.202205305
  • [17] Tellez-Cruz, M. M., Escorihuela, J., Solorza-Feria, O., & Compañ, V. (2021). Proton exchange membrane fuel cells (PEMFCs): advances and challenges. Polymers, 13(18), 3064. https://doi.org/10.3390/polym13183064
  • [18] Yue-Tzu, Y., Kuo-Teng, T., & Cha’o-Kuang, Ch. (2012). The effects of the PEM fuel cell performance with the waved glow channels. Journal of Applied Mathematics, 2013, 862645. http://dx.doi.org/10.1155/2013/862645
  • [19] Zeroual, M., Ben Moussa, H., & Tamerabet, M. (2012). Effect of gas flow velocity in the channels of consumption reactants in a fuel cell type (PEMFC). Energy Procedia, 18, 317-326. https://doi.org/10.1016/j.egypro.2012.05.043
  • [20] Zhang, J., Li, H., & Zhang, J. (2009). Effect of operating backpressure on PEM fuel cell performance. ECS Transactions, 19(31), 65-76. https://doi: 10.1149/1.3271363
  • [21] Zhang, Y., Liu, C., Wan, Z., Yang, C., Li, S., Tu, Z., Wu, M., Chen, Y., & Zhou, W. (2021). Performance enhancement of PEM fuel cells with an additional outlet in the parallel flow field. Processes, 9(11), 2061. https://doi.org/10.3390/pr9112061
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffd753cc-e3a4-425f-a486-efbbbb085e0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.