PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of IQT on research in ICT. Part 3

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The advanced Quantum Information Technologies subject for Ph.D. students in Electronics Engineering and ICT consists of three parts. A few review lectures concentrate on topics which may be of interest for the students due to their fields of research done individually in their theses. The lectures indicate the diversity of the QIT field, resting on physics and applied mathematics, but possessing wide application range in quantum computing, communications and metrology. The individual IQT seminars prepared by Ph.D. students are as closely related to their real theses as possible. An important part of the seminar is a discussion among the students. The task was to enrich, possibly with a quantum layer, the current research efforts in ICT. And to imagine, what value such a quantum enrichment adds to the research. The result is sometimes astonishing, especially in such cases when quantum layer may be functionally deeply embedded. The final part was to write a short paragraph to a common paper related to individual quantum layer addition to the own research. The paper presents some results of such an experiment and is a continuation of previous papers of the same style.
Twórcy
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
autor
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
autor
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
autor
  • Warsaw University of Technology, Poland
  • Warsaw University of Technology, Poland
Bibliografia
  • [1] S. Rekha, L. Thirupathi, S. Renikunta, and R. Gangula, “Study of security issues and solutions in internet of things (iot),” Materials Today: Proceedings, vol. 80, pp. 3554-3559, 2023, sI:5 NANO 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785321051543
  • [2] M. R. Na and S. K. B, “A study on air-gap networks,” in 2024 5th International Conference on Innovative Trends in Information Technology (ICITIIT), 2024, pp. 1-6.
  • [3] V. Weger, N. Gassner, and J. Rosenthal, “A survey on code-based cryptography,” CoRR, vol. abs/2201.07119, 2022. [Online]. Available: https://arxiv.org/abs/2201.07119
  • [4] S. Suhail, R. Hussain, A. Khan, and C. S. Hong, “On the role of hash-based signatures in quantum-safe internet of things: Current solutions and future directions,” IEEE Internet of Things Journal, vol. 8, no. 1, pp. 1-17, 2021.
  • [5] A. Alfrhan, T. Moulahi, and A. Alabdulatif, “Comparative study on hash functions for lightweight blockchain in internet of things (iot),” Blockchain: Research and Applications, vol. 2, no. 4, p. 100036, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2096720921000312
  • [6] R. Asif, “Post-quantum cryptosystems for internet-of-things: A survey on lattice-based algorithms,” IoT, vol. 2, no. 1, pp. 71-91, 2021. [Online]. Available: https://www.mdpi.com/2624-831X/2/1/5
  • [7] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” 2014. [Online]. Available: https://arxiv.org/abs/1411.4028
  • [8] World Bank Group, “Managing risks of aging dams in sub-saharan africa,” 2020.
  • [9] Z. W. Kundzewicz and Z. Kaczmarek, “Coping with hydrological extremes,” Water International, vol. 25, no. 1, pp. 66-75, 2000. [Online]. Available: https://doi.org/10.1080/02508060008686798
  • [10] B. Bates, Z. Kundzewicz, S. Wu, V. Burkett, P. Doell, D. Gwary, C. Hanson, B. Heij, B. Jiménez, G. Kaser, A. Kitoh, S. Kovats, P. Kumar, C. Magadza, D. Martino, L. Mata, M. Medany, K. Miller, and N. Arnell, “Climate change and water. technical paper of the intergovernmental panel on climate change,” 06 2008.
  • [11] S. Suzuki, H. Nishimori, and M. Suzuki, “Quantum annealing of the random-field ising model by transverse ferromagnetic interactions,” Physical Review E, vol. 75, no. 5, May 2007. [Online]. Available: http://dx.doi.org/10.1103/PhysRevE.75.051112
  • [12] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, “Parameterized quantum circuits as machine learning models,” Quantum Science and Technology, vol. 4, no. 4, p. 043001, nov 2019. [Online]. Available: https://dx.doi.org/10.1088/2058-9565/ab4eb5
  • [13] Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum computing for drug discovery,” IBM Journal of Research and Development, vol. 62, no. 6, pp. 6:1-6:20, 2018.
  • [14] E. H. Pujiarini, I. Zulfa, and A. Asmadi, “The role of quantum computing in advancing cross-disciplinary informatics: A theoretical framework,” Journal of Social Science Utilizing Technology, vol. 2, no. 2, p. 202-215, Jul. 2024. [Online]. Available: https://journal.ypidathu.or.id/index.php/jssut/article/view/970
  • [15] G. Verma, P. Mittal, and S. Farheen, “Real time weather prediction system using iot and machine learning,” in 2020 6th International Conference on Signal Processing and Communication (ICSC). IEEE, 2020, pp. 322-324.
  • [16] P. Sharma and S. Prakash, “Real time weather monitoring system using iot,” in ITM web of conferences, vol. 40. EDP Sciences, 2021.
  • [17] S. F. Islam, M. Akter, and M. S. Uddin, “Design and implementation of an internet of things based low-cost smart weather prediction system,” International Journal of Information Technology, vol. 13, no. 5, pp. 2001-2010, 2021.
  • [18] B. Surendiran, K. Dhanasekaran, and A. Tamizhselvi, “A study on quantum machine learning for accurate and efficient weather prediction,” in 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC). IEEE, 2022, pp. 534-537.
  • [19] M. S. Peelam, A. A. Rout, and V. Chamola, “Quantum computing applications for internet of things,” IET Quantum Communication, vol. 5, no. 2, pp. 103-112, 2024.
  • [20] S. Ashwani, A. J. Tripathy, S. Karna, P. R. Jahanve, and S. M. Rajagopal, “Quantum computing for climate change: A comprehensive review of current applications, challenges, and future directions,” in 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE, 2024, pp. 1-7.
  • [21] P. J. K. L. B. J. K. K. Lekawa-Raus, Agnieszka, “Electrical properties of carbon nanotube based fibers and their future use in electrical wiring,” Advanced Functional Materials, vol. 24, no. 24, pp. 3661-3682, 2014. [Online]. Available: https://doi.org/10.1002/adfm.201303716
  • [22] M. G. J. C.-N. R. W. J. H. A. M. B. M. P. R. R. B. M. John S. Bulmer, Arthur W.N. Sloan, “Forecasting carbon nanotube diameter in floating catalyst chemical vapor deposition,” Carbon, vol. 201, pp. 719-733, 2023. [Online]. Available: https://doi.org/10.1016/j.carbon.2022.08.001
  • [23] T. P. J. J. D. J. M. L.-R. Taborowska, P.; Giżewski, “Spun carbon nanotube fibres and films as an alternative to printed electronic components,” Materials, vol. 13, p. 431, 2020. [Online]. Available: https://doi.org/10.3390/ma13020431
  • [24] G. T. P. J. K. L. K. K. Lekawa-Raus, A., “Electrical transport in carbon nanotube fibres,” Scripta Materialia, vol. 131, pp. 112-118, 2017. [Online]. Available: https://doi.org/10.1016/j.scriptamat.2016.11.027
  • [25] K. K. W. A. Sundaram, R., “Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality,” Adv. Mater, vol. 23, pp. 5064-5068, 2011. [Online]. Available: https://doi.org/10.1002/adma.201102754
  • [26] A. K. et al., “Engineering challenges and innovations in controlled synthesis of cnt fiber and fabrics in floating catalyst chemical vapor deposition (fc-cvd) process,” Diamond and Related Materials, vol. 148, p. 111474, 2024. [Online]. Available: https://doi.org/10.1016/j.diamond.2024.111474
  • [27] F. F. J. M. M. G. W. K.-J. Baydin, A.; Tay, “Carbon nanotube devices for quantum technology,” Materials, vol. 15, p. 1535, 2024. [Online]. Available: https://doi.org/10.3390/ma15041535
  • [28] W. Legrand, S. Lopes, Q. Schaeverbeke, F. Montaigne, and M. Desjardins, “Optimal design of nanomagnets for on-chip field gradients,” Phys. Rev. Appl., vol. 20, p. 044062, Oct 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.20.044062
  • [29] J. Zaumseil, “Luminescent defects in single-walled carbon nanotubes for applications,” Advanced Optical Materials, vol. 10, p. 2101576, 2022. [Online]. Available: https://doi.org/10.1002/adom.202101576
  • [30] H. H. D. S. e. a. He, X., “Carbon nanotubes as emerging quantum-light sources,” Nature Materials, vol. 17, p. 663-670, 2018. [Online]. Available: https://doi.org/10.1038/s41563-018-0109-2
  • [31] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: Beating the standard quantum limit,” Science, vol. 306, no. 5700, pp. 1330-1336, 2004. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1104149
  • [32] J. L. O’Brien, A. Furusawa, and J. Vuˇckovi´c, “Photonic quantum technologies,” Nature Photonics, vol. 3, no. 12, pp. 687-695, Dec 2009. [Online]. Available: https://doi.org/10.1038/nphoton.2009.229
  • [33] A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science, vol. 325, no. 5945, pp. 1221-1221, 2009. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1173731
  • [34] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature, vol. 464, no. 7285, pp. 45-53, Mar 2010. [Online]. Available: https://doi.org/10.1038/nature08812
  • [35] C. Li, T. Dragicevic, N. Leonardo Díaz Aldana, A. C. Luna Hernández, Y. Guan, T. B. Rasmussen, and S. Beheshtaein, “Grid architecture for future distribution system — a cyber-physical system perspective,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 5235-5239.
  • [36] J. W. Kolar and J. E. Huber, “The essence of solid-state transformers fundamentals, design challenges, rd overview, comparative evaluation, outlook,” 2023-09-08, 25th European Conference on Power Electronics and Applications (EPE’23 ECCE Europe); Conference Location: Aalborg, Denmark; Conference Date: September 4-8, 2023; Tutorial on September 8, 2023 at the 25th European Conference on Power Electronics and Applications (EPE - ECCE Europe).
  • [37] S. K. Routray, M. K. Jha, L. Sharma, R. Nyamangoudar, A. Javali, and S. Sarkar, “Quantum cryptography for iot: Aperspective,” in 2017 International Conference on IoT and Application (ICIOT), 2017, pp. 1-4.
  • [38] M. Gheisarnejad and M.-H. Khooban, “Quantum power electronics: From theory to implementation,” Inventions, vol. 8, no. 3, 2023. [Online]. Available: https://www.mdpi.com/2411-5134/8/3/72
  • [39] “Can quantum sensors improve real-time metrology in fabs?” https://www.eetimes.eu/can-quantum-sensors-improve-real-time-metrology-in-fabs/, accessed: 2024-12-17.
  • [40] Y. Zhou, Z. Tang, N. Nikmehr, P. Babahajiani, F. Feng, T.-C. Wei, H. Zheng, and P. Zhang, “Quantum computing in power systems,” iEnergy, vol. 1, no. 2, 6 2022. [Online]. Available: https://www.osti.gov/biblio/1899909
  • [41] M. Kim, D. Venturelli, and K. Jamieson, “Towards hybrid classical-quantum computation structures in wirelessly-networked systems.” New York, NY, USA: Association for Computing Machinery, 2020. [Online]. Available: https://doi.org/10.1145/3422604.3425924
  • [42] B. Narottama, Z. Mohamed, and S. Aïssa, “Quantum machine learning for next-g wireless communications: Fundamentals and the path ahead,” IEEE Open Journal of the Communications Society, vol. 4, pp. 2204-2224, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10233127
  • [43] T. Ohyama, Y. Kawamoto, and N. Kato, “Quantum computing based optimization for intelligent reflecting surface (irs)-aided cell-free network,” IEEE Transactions on Emerging Topics in Computing, vol. 11, no. 1, pp. 18-29, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9743596
  • [44] M. Koyanagi, “System integration technology based on 3d integration,” in 2022 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), 2022, pp. 1-4. [Online]. Available: https://ieeexplore.ieee.org/document/9975417
  • [45] K. H. Teo, Y. Zhang, N. Chowdhury, S. Rakheja, R. Ma, Q. Xie, E. Yagyu, K. Yamanaka, K. Li, and T. Palacios, “Emerging gan technologies for power, rf, digital, and quantum computing applications: Recent advances and prospects,” Journal of Applied Physics, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:240238844
  • [46] B. Narottama, Z. Mohamed, and S. A¨ıssa, “Quantum machine learning for next-g wireless communications: Fundamentals and the path ahead,” IEEE Open Journal of the Communications Society, vol. 4, pp. 2204-2224, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10233127
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffd5657a-1d57-49b4-bf2c-753cc19eefe0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.