PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generalized state space model and small signal stability analysis of Z-source converter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes two nonlinear exact and simple state space models of a Z-source converter (ZSC) connected to an ac grid. A generic model of a ZSC accompanied with proper controllers are proposed and a dynamic model of the whole system is derived; as a result, based on a simple one, an equivalent block diagram of the current-controlled ZSC system is proposed. The ac small signal stability method is applied and the impact of controller parameters on network’s stability is discussed. Besides, overall system dynamic performance has been assessed in the event of perturbations. Time-domain simulations have been implemented in PSCAD/EMTDC to validate the accuracy of the models and effectiveness of the proposed controllers. The results of the exact model are compared with the response of the equations which are applied in MATLAB.
Rocznik
Strony
173--188
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wz.
Twórcy
  • Department of Technical Study Shiraz Electric Distribution Company Shiraz, Iran
autor
  • Department of Control and Management Neyriz Ghadir Steel Complex (NGHSCO) Fars, Iran
  • Department of Power and Control Engineering Shiraz University of Technology Shiraz, Iran
Bibliografia
  • [1] Peng F.Z., Z-source inverter, IEEE Trans. Ind Appl., vol. 39, no. 2, pp. 504–510 (2003), DOI: 10.1109/IAS.2002.1042647.
  • [2] Siwakoti Y.P., Peng F.Z., Blaabjerg F., Loh P.C., Town G.E., Impedance-source networks for electric power conversion part I: a topological review, IEEE Trans. Power Electron., vol. 30, no. 2, pp. 699–716 (2015), DOI: 10.1109/TPEL.2014.2313746.
  • [3] Siwakoti Y.P., Peng F.Z., Blaabjerg F., Loh P.C., Town G.E., Yang S., Impedance-source networks for electric power conversion part II: review of control and modulation techniques, IEEE Trans. PowerElectron., vol. 30, no. 4, pp. 1887–1906 (2015), DOI: 10.1109/TPEL.2014.2329859.
  • [4] Peng F.Z., Yuan X., Fang X., Qian Z., Z-source inverter for adjustable speed drives, IEEE Trans. Power Electron., vol. 1, no. 2, pp. 33–35 (2003), DOI: 10.1109/LPEL.2003.820935.
  • [5] Peng F.Z., Joseph A., Wang J., Shen M., Chen L., Pan Z., Rivera E.O., Huang Y., Z-source inverter for motor drives, IEEE Trans. Power Electron., vol. 20, no. 4, pp. 857–863 (2005), DOI: 10.1109/TPEL.2005.850938.
  • [6] Shen M., Joseph A., Wang J., Peng F.Z., Adams D.J., Comparison of traditional inverters and Z-source inverter for fuel cell vehicles, IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1453–1463 (2007), DOI: 10.1109/TPEL.2004.1393815.
  • [7] Guo F., Fu L., Lin C.H., Li C., Choi W., Wang J., Development of an 85-kW bidirectional quasi-Z- source inverter with DC-link feed forward compensation for electric vehicle applications, IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5477–5488 (2013), DOI: 10.1109/TPEL.2012.2237523.
  • [8] Peng F.Z., Shen M., Holland K., Application of Z-source inverter for traction drive of fuel cell-battery hybrid electric vehicles, IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1054–1061 (2007), DOI: 10.1109/TPEL.2007.897123.
  • [9] Dehghan S.M., Mohamadian M., Yazdani A., Hybrid electric vehicle based on bidirectional z-source nine-switch inverter, IEEE Trans. Vehicular Tech., vol. 59, no. 6, pp. 2641–2653 (2010), DOI: 10.1109/TVT.2010.2048048.
  • [10] Gajanayake C.J., Vilathgamuwa D.M., Loh P.C., Teodorescu R., Blaabjerg F., Z-source-inverter-based flexible distributed generation system solution for grid power quality improvement, IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 695–704 (2009), DOI: 10.1109/TEC.2009.2025318.
  • [11] Jokar Kouhanjani M., Seifi A.R., Mehrtash M., Dynamic Model and Small Signal Analysis of Z-Source Inverter, IETE Journal of Research, vol. 66, no. 65:3, pp. 342–350 (2018), DOI: 10.1080/03772063.2018.1432421.
  • [12] Jokar Kouhanjani M., Seifi A.R., Comparison of VSC and Z-source converter: power system application approach, Advances in Electronic and Electric Engineering, vol. 15, no. 1, pp. 12–18 (2017), DOI: 10.15598/aeee.v15i1.1766.
  • [13] Ge B., Abu-Rub H., Peng F.Z., Li Q., de Almeida A.T., Ferreira F.J.T.E., Sun D., Liu Y., An energy stored quasi-Z-source inverter for application to photovoltaic power system, IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4468–4481 (2013), DOI: 10.1109/TIE.2012.2217711.
  • [14] Dehghan S.M., Mohamadian M., Varjani A.Y., A new variable-speed wind energy conversion system using permanent-magnet synchronous generator and z-source inverter, IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 714–724 (2009), DOI: 10.1109/TEC.2009.2016022.
  • [15] Jung J.W., Keyhani A., Control of fuel cell based z-source converter, IEEE. Trans. Energy Convers., vol. 22, no. 2, pp. 467–476 (2007), DOI: 10.1109/TEC.2006.874232.
  • [16] Liu J., Hue J., Xu L., Dynamic modelling and analysis of z source converter-derivation of ac small signal model and design-oriented analysis, IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1786–1796 (2007), DOI: 10.1109/TPEL.2007.904219.
  • [17] Yu K., Luo F.L., Zhu M., Study of an improved z-source inverter: small signal studies, in Proc., 5th Annual IEEE Industrial Electronics and Application. Conf., pp. 2169–2174 (2010), DOI: 10.1109/ICIEA.2010.5515153.
  • [18] Gajanayake C.J., Vilathgamuwa D.M., Loh P.C., Small- signal and signal-flow-graph modelling of switched z-source impedance network, IEEE Lett. Power Electron., vol. 3, no. 3, pp. 111–116 (2005), DOI: 10.1109/LPEL.2005.859771.
  • [19] Loh P.C., Vilathgamuwa D.M., Gajanayake C.J., Lim Y.R., Teo C.W., Transient modelling and analysis of pulse-with-modulated z-source inverter, IEEE Trans. Power Electron., vol. 22, no. 2, pp. 498–507 (2007), DOI: 10.1109/TPEL.2006.889929.
  • [20] Galigekere V.P., Kazimierczuk M.K., Analysis of PWM z-source DC-DC converter in CCM for steady state, IEEE Trans. Circuits and Systems, vol. 59, no. 4, pp. 854–863 (2012), DOI: 10.1109/TCSI.2011.2169742.
  • [21] Galigekere V.P., Kazimierczuk M.K., Small-signal modelling of open-loop PWM z-source converter by circuit-averaging technique, IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1286-1296, Mar. 2013, DOI: 10.1109/TPEL.2012.2207437.
  • [22] Peng F.Z., Shen M., Qian Z., Maximum Boost Control of the Z-Source Inverter, IEEE Trans. Power Electron, vol. 20, no. 4, pp. 833–838 (2005), DOI: 10.1109/TPEL.2005.850927.
  • [23] Shen M., Wang J., Joseph A., Peng F.Z., Tolbert L.M., Adams D.J., Maximum constant boost control of the z-source inverter, IEEE Indus. Appl. Conf., pp. 3–7 (2004), DOI: 10.1109/IAS.2004.1348400.
  • [24] Ding X., Qian Z., Xie Y., Peng F.Z., A Novel ZVS Z-Source Rectifier, IEEE Power Electron. Specialists Conf., pp. 1–5 (2006), DOI: 10.1109/APEC.2006.1620653.
  • [25] Yazdani A., Irevani R., Voltage-sourced converters in power systems, 1𝑠𝑡 ed., IEEE Press, John Wiley & Sons, pp. 204244 (2010).
  • [26] Yazdani A., Irevani R., An accurate model for the DC-side voltage control of the neutral point diode clamped converter, IEEE Trans. Power Del., vol. 21, no. 1, pp. 185–193 (2006), DOI: 10.1109/TP- WRD.2005.852342.
  • [27] Yazdani A., Iravani R., A generalized state-space averaged model of the three-level NPC converter for systematic DC-voltage-balancer and current-controller design, IEEE Trans. Power Del., vol. 20, no. 2, pp. 1105–1114 (2005), DOI: 10.1109/TPWRD.2004.834307.
  • [28] Liang H., Li G., Li P., Yin M., Analysis and design of H1 controller in VSC HVDC systems, in: IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, p. 6 (2005), DOI: 10.1109/TDC.2005.1547069.
  • [29] Zhang L., Nee H.-P., Multivariable feedback design of VSC-HVDC connected weak AC systems, in: Power Tech., pp. 1–8 (2009), DOI: 10.1109/PTC.2009.5282110.
  • [30] Li G., Ma G., Zhao C., Li G., Research of nonlinear control strategy for VSC-HVDC system based on Lyapunov stability theory, in Proc. 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 2187–2191 (2008), DOI: 10.1109/DRPT.2008.4523773.
  • [31] Mao C., Hu Z., Lu J., Chang D., Fan S., Application of an optimal coordinated control strategy to VSC HVDC, in Proc. IEEE PES Power Systems Conference and Exposition, pp. 2141–2145 (2006), DOI: 10.1109/PSCE.2006.296275.
  • [32] Tsang K.M., Chan W.L., Decoupling controller design for z-source inverter, IET Power Elec., vol. 8, no. 4, pp. 536–545 (2015), DOI: 10.1049/iet-pel.2014.0207.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffd0cba7-6485-4fe4-9a95-d0652ac7f3da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.