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Abstract A fundamental problem in computational biology is dealing with circular pat-

terns. The problem consists of finding a pattern and its rotations in a database.

In this paper, we present two online algorithms. The first algorithm reports all

of the substrings (factors) of a given pattern in an online text. Then, without

losing efficiency, we extend the algorithm to process the circular rotations of the

pattern. For a given pattern P of size M and a text T of size N , the extended

algorithm reports all of the locations in the text where a substring of Pc is found

where Pc is one of the rotations of P . For an alphabet size σ using O(M) space,

the desired goals are achieved in an average O(MN/σ) time, which is O(N) for

all patterns with length M ≤ σ. Traditional string-processing algorithms make

use of advanced data structures such as suffix trees and automaton. The ex-

perimental results we have provided show that basic data structures such as ar-

rays can be used in text-processing algorithms without compromising efficiency.
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1. Introduction

A fundamental problem in computer science is searching for a pattern in a text.

A slightly different problem (‘circular-pattern-matching’, or CPM) deals with circular

patterns. This problem involves dealing with multiple patterns that are the rotations

of a given pattern simultaneously. CPM is crucial in the context of many biological

and computational geometry-related problems. The DNA of some viruses, bacteria,

eukaryote, and plants is circular in shape. Circular-shaped DNA makes a potential

search process highly complex. Traditional string-matching algorithms work well for

linear patterns, but they are not well-suited for processing the ring-shaped DNA of

these organisms. A circular pattern is best represented by a cyclic array in which the

last and first indexes are adjacent to each other; i.e., for a pattern of size M , the first

index 1 is followed by the last index M . Notice that we assume the initial index of

the pattern to be 1 instead of 0. For example, for a circular pattern P = ABBAAB,

there are six different rotations or conjugates: P1 = ABBAAB,P2 = BBAABA,P3 =

BAABAB,P4 = AABABB,P5 = ABABBA, and P6 = BABBAA. Each rotation

Pc of length M that starts at index c in P called a conjugate of P (where 1 ≤ c ≤ M).

Notice that two or more rotations of a pattern can be the same depending on the

character-frequencies of the individual characters in the pattern.

2. Related work

Most of the string-processing algorithms discovered so far are covered in [1, 6, 10],

and [14]. These algorithms can also be used to process circular patterns by applying

some modifications. A substring or a factor of pattern P is nothing but a prefix of

some of the suffixes of P . Therefore, ‘suffix tree’ and ‘suffix automaton’ have been

widely used in the literature to solve pattern-matching problems [3, 10, 15], and [17].

A ‘suffix tree’ is a tree that contains all of the suffixes of a text. Most of the suffix

tree-based algorithms maintain an array of pointers of size σ (the size of the alphabet),

which may be an issue when the size of the alphabet is large. The suffix tree-based

approach presented in [12] is comprised of building suffix trees for text T and T
′
,

where T
′
is obtained by reversing text T . Another suffix tree-based algorithm [9]

consists of creating a generalized cyclic suffix tree for all of the rotations of a given

set of sequences and then applying the search in O(N) time. Another widely used data

structure ‘suffix automaton’ simulates the smallest deterministic finite automaton that

recognizes all of the suffixes of a given pattern [3,6]. Therefore, suffix automatons are

the best-suited data structures to recognize all of the substrings of a pattern in a text.

The algorithm given in [14] is based on the simple fact that any rotation of a pattern P

is a substring of PP . Therefore, a suffix automaton for PP is capable of searching for

all of the rotations of P in text T in O(N) time. Bit-parallel algorithms such as [4,5],

and [11] gained momentum following [16] in which fast bit-wise operations were used

to speed up the search process. Note that [16] was designed to process those non-

circular patterns that were later on extended to processing the circular patterns [4]
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and [11]. The algorithms presented in [4] and [11] run in a worst-case O(NM2) time,

whereas [5] requires average-case time O(NlogσM/W ), where W is the word size of

the machine. The algorithm presented in [13] solves the CPM problem in O(Nlog(σ))

time and O(N) space. The algorithm presented in [2] is based on the concatenation

of a pattern with itself, followed by partitioning the string into fragments, and then

processing each fragment individually.

The state-of-the-art solutions presented above require some serious efforts in the

preprocessing phase to implement and maintain the complex data structures. These

solutions are fantastic, but they may merely be overkill when a database is small and

the pattern only needs to be searched once over the text. The algorithms we propose

in Sections 7 and 8 simulate a suffix automaton for linear and circular patterns without

actually creating it.

3. Assumptions and notations

Throughout the paper, we use symbol T for text and P for pattern. Both T and P

are non-empty finite sequences of symbols that are drawn from alphabet λ of size σ.

We use symbol N and M to denote the size of a text and a pattern, respectively.

As most of the practical situations demand, we assume both T and P to be non-

empty such that N ≥ M . We use integers i and j to represent the indexes over T

and P , respectively. The term ‘index’, ‘shift’, or ‘location’ represent the location of

a character in a text or pattern from the beginning. We assume the initial index of the

text and the pattern to be 1, which is slightly different from the traditional notation

where 0 is assumed to be the initial index. So, in our case, indexes i and j are such

that 1 ≤ i ≤ N and 1 ≤ j ≤ M . T [i] or Ti represent the ith character of T , and P [j]

or Pj represent the jth character of P . A ‘substring’, ‘factor’, or ‘sub-word’ of P is

a string that is contained in P . For a pattern P with all distinct characters, there

are (1 + P (P+1)
2 ) different substrings; e.g., for P = ABCD, the set of all substrings

(factors) is {′ ′, A,B,C,D,AB,BC,CD,ABC,BCD,ABCD}.

4. Substring search

Consider the simple problem of searching for the word ‘branch’ using the Google

search engine. As we type the first three letters (‘bra’), the browser predicts the

remaining letters. This is good enough, but try inducing a typo by replacing the

first letter ‘b’ by some other letter; say, ‘a’. Now, when typing ‘ara’, ‘aran’, ‘aranc’,

or ‘aranch’, the text predictor fails miserably. In the first case, the input of just

three letters was enough to predict the whole word. In the second case, however, the

initial wrong input followed by five correct letters could not induce the text predictor

to suggest the word ‘branch’. So much is the dependence of the text predictor on

the first letter that it was unable to map the word ‘aranch’ to ‘branch’ even while

matching five of the six letters correctly; it completely ignored the match of the last

five letters.
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In this paper, we adopt a different form of ‘similarity’ that is based on the length

of the substring of a pattern. Consider a pattern P = ABCD that has ten different

non-empty substrings {A, B, C, D, AB, BC, CD, ABC, BCD, ABCD}. Furthermore,

let us consider all of the conjugates of P such that P1 = ABCD, P2 = BCDA,

P3 = CDAB, and P4 = DABC. Now, the set of substrings grows even further {A, B,

C, D, AB, BC, CD, DA, ABC, BCD, CDA, DAB, ABCD, BCDA, CDAB, DABC}.
From these sets, it is clear that the larger substrings of P have a greater similarity

to P or its conjugates. The algorithm discussed in Sections 7 and 8 report all of

the substrings of P or their conjugates in online text stream T . Needless to say, the

extended version of the algorithm works for both circular or non-circular patterns.

The problem we solve can be defined as follows:

Let T [1 . . . N ] be a text stream of size N and P [1 . . .M ] be a pattern of size M

such that 1 ≤ M ≤ N . Let Pc represent the cth rotation (conjugate) of P such that

1 ≤ c ≤ M . Then, for a given integer k(1 ≤ k ≤ M), report all of the i locations in

T (1 ≤ i ≤ N) where a substring (factor) of Pc length ≥ k is found.

The algorithms presented in this paper are completely different from the solutions

that were developed in the past in the following aspects. First, our ‘model of similarity’

is based on the ‘length of the substring’ – a larger substring means a greater similarity.

Had this been the case with the Google search engine, the text predictor would not

have missed the word ‘branch’, as we have seen this before. Second, the proposed

algorithms are online in nature; i.e., the text characters are fed to the algorithm

one-by-one, and the substrings are reported as they are encountered in the text.

Third, the algorithms do not make use of any complex data structure, yet remain

competitive in most of the cases, which is evident from the the experimental results

given in Section 10. The rest of the paper is organized as follows. In the section

that follows, we provide a pattern-preprocessing algorithm that was also given in our

previous work [18]. The theoretical base for the proposed algorithms is provided in

Section 6. In Section 7, we provide our first algorithm that reports all of the substrings

of a non-circular pattern in a text. The extended version given in Section 8 enables

the algorithm to process the circular patters. In Section 9, we provide a detailed

discussion on the time-space requirement of the algorithms. And finally, in Section 10,

we perform experiments to compare the algorithm given in Section 7 with the state-

-of-the-art solutions.

5. Pattern preprocessing

To process the pattern, an array of pointers ‘shift[max ASCII+1]’ is used as a hash

table, where max ASCII is the maximum possible ASCII code of a character in the

alphabet (which is typically 127 or 255). Each pointer in an array points to a linked list

that stores all of the ‘shifts’ of a character in the pattern. Initially, all of the linked

lists are empty. The pattern is read from left to right. Based on the ASCII value

of the character, its shift is stored in the corresponding linked list. Let us consider

pattern P = ABBAAB. For the first character ‘A’ (which is at shift 1), a node that
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contains the integer 1 is inserted in the link list at shift[65], where 65 is the ASCII

code of the letter ‘A’. Similarly for the next character ‘B’, a node that contains the

the integer ‘2’ is inserted in the link list beginning at 66. Figure 1 shows the algorithm

and the resulting shift array. Notice that, in the shift array, the nodes are inserted in

the beginning of the list, which creates the list in reverse order.

Figure 1. Pattern-preprocessing algorithm and output shift array

6. The ‘i-j chain’ lemma

Let T [1, . . . , N ] be a text array of size N , and let P [1, . . . ,M ] be a pattern array of

size M . Let i and j represent shifts in T and P , respectively, such that 1 ≤ i ≤ N

and 1 ≤ j ≤ M . Now, for each shift j in P , we define a set Rj such that Rj =

{i | T [i] = P [j] ∀ i′s in T}. Now, consider sets R1, R2 . . . RM as defined above.

Let there be three integers (i, j, and k) such that i ∈ Rj , (i + 1) ∈ Rj+1, (i + 2) ∈
Rj+2 . . . (i+k−1) ∈ Rj+k−1. Then, we refer to sequence i ∈ Rj , (i+1) ∈ Rj+1, (i+2)

∈ Rj+2 . . . (i+ k − 1) ∈ Rj+k−1 as an ‘i-j chain’ of length k. Each ‘i-j chain’ of length k

represents a k-length substring of P that is available at shift i in T .

Proof. Let i ∈ Rj → T [i] = P [j]; i.e., each i ∈ Rj represents a single character match

of the ith character of T with the jth character of P , which is simply a substring of

length 1 of P in T . Similarly, i ∈ Rj and (i+ 1) ∈ Rj+1 represent a match of the ith

character of T with the jth character of P as well as the (i+1)th character of T with

the (j + 1)th character of P , which is a substring of length 2, and so on. Therefore,

it follows that i ∈ Rj , (i+ 1) ∈ Rj+1, . . . (i+ k − 1) ∈ Rj+k−1 represents a substring

of length k of P in T .

Observation 1. For some P [j], if none of the text characters are T [i] = P [j], then Rj

would be empty; i.e., Rj = {}. In such a case, a chain of length M (i.e., a substring

of length M) would not be possible. In other words, an exact match of P is not

available in T .
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Example 1. Let P be a pattern of size M = 6 such that P = ABBAAB. Let T be

the text of size N = 25 such that T = BAAABABBBBAABABBAABAABABB.

In this case, we have 1 ≤ i ≤ 25 and 1 ≤ j ≤ 6. The ‘i-j chain lemma’ given in

the preceding section yields the following six sets:

R1 ={2, 3, 4, 6, 11, 12, 14, 17, 18, 20, 21, 23};
R2 ={1, 5, 7, 8, 9, 10, 13, 15, 16, 19, 22, 24, 25};
R3 ={1, 5, 7, 8, 9, 10, 13, 15, 16, 19, 22, 24, 25};
R4 ={2, 3, 4, 6, 11, 12, 14, 17, 18, 20, 21, 23};
R5 ={2, 3, 4, 6, 11, 12, 14, 17, 18, 20, 21, 23};
R6 ={1, 5, 7, 8, 9, 10, 13, 15, 16, 19, 22, 24, 25}.

For the given pattern and text, Algorithm 1 (given in the next section) is simu-

lated in Figure 2. The sets given above are drawn vertically in Figure 2, which shows

the online construction of the ‘i-j chains’. The first column of Figure 2 shows the

input text character with its shift i in the text. The next six columns represent sets

R1, . . . , R6. For each text character, some of the sets in the figure grow top-down

by one element. For example, for the first input text character T [1] = B, the corre-

sponding shifts in the pattern are 6, 3, and 2 (refer to Figure 1). Consequently, for

the first element i = 1, we add 1 to sets R6, R3, and R2. We call it indexes 6, 3, and 2

being hit (stamped) by timestamp i = 1. For the next input text character T [2] = A

(which is at shifts 5, 4, and 1 in the pattern), we stamp R5, R4, and R1 with current

timestamp i = 2. In the next step, the cell being hit is connected with the immediate

upper-left cell if it has an immediate preceding timestamp (i− 1). This forms a chain

that we call the ‘i-j chain’. Each ‘i-j chain’ in the figure represent a substring or factor

of P . With respect to each incoming text character, the largest chain is chosen to

show the length of the substring in the last two columns.

7. Substring search algorithm: linear patterns

In Figure 2, a table is used to create the ‘i-j chains’. However, for large values of N ,

a table of size MN would be impractical. However, Algorithm 1 next uses a single

one-dimensional array ‘hit[]’ of size M +1 to achieve same goals. Notice that, in this

case, the each upper-left cell to a cell in Figure 2 would become the immediate left

cell in the one-dimensional array. Each cell of the hit[] array maintains two integer

fields: ‘len’, and ‘ts’. Field ‘len’ records the length of the ‘i-j chain’, and field ‘ts’

records timestamp i. We call the array ‘hit[]’ because each incoming text character

hits some of the array cells with current timestamp i.

Observation 2. While stamping the cell hit[t] of the array, the algorithm inspects

the left neighbor hit[t-1] to form a possible chain. This is why the array is stamped

from right to left to ensure that the data of a cell is not updated before it is read.

This is precisely why the linked lists in Figure 1 are created in reverse order.
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Observation 3. For cell hit[0], there is no immediate left neighbor; so, what will

happen if the algorithm hits at hit[0]? This possibility is eliminated by assuming the

initial pattern index to be 1; i.e., hit[0] never gets stamped by the algorithm.

Algorithm 1 Hit-index substring search (linear patterns):

Input: Pattern in the form of a shift array as shown in Figure 1, an integer k

(1 ≤ k ≤ M), where k is the minimum length of the substring to be searched, and

the online text stream.

Output: All locations in the text stream where a substring of length ≥ k of the

pattern is found. The output is shown as each text character is received.

Require: Let ’node’ be structure with two fields: integer s, and node type pointer *next

Let ’cell’ be structure with two fields: integer len, and integer ts

integer i = 0, j, t, k, M, maxlen

array cell hit[ M+1 ]

for j = 0 to M do

hit[ j ].ts ← -1 /*Initialize array timestamp */

end for

while (Not end of text) do

j ← ASCII value of input text character

node *ptr ← shift[j] /*jump to jth link list in shift array*/

maxlen ← 0, i ← i+1

while (ptr! = null) do

t ← (ptr→s)

hit[ t ].ts ← i /* stamp index t with current timestamp i */

if (hit[t− 1].ts == (i− 1)) then

hit[ t ].len ← hit[ t-1 ].len + 1 /*increase chain-length */

else

hit[ t ].len ← 1 /*reset chain-length to 1*/

end if

if (hit[t].len > maxlen) then

maxlen←hit[ t ].len /*keep track of largest chain */

end if

ptr ←(ptr →next)

end while

if (maxlen ≥ k) then

Print Substring length and Location: maxlen, i-maxlen + 1

end if

end while
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Figure 2. Algorithm 1 output for P = ABBAAB. Last column shows longest substring of P

that is found in T

8. Substring search algorithm: circular patterns

The ‘i-j chain’ lemma given in Section 6 can be extended for circular patterns by

assuming set R1 to be the successor of RM . This means the two consecutive integers

in the last set RM and the first set R1 can be connected to form a circular chain (refer

to Figure 3). Algorithm 2 given next (the extended version of Algorithm 1) does

exactly this. The corresponding process is shown in Figure 3. Therefore, in Figure 3,

the last cell of hit[] array in the immediate upper row becomes the immediate left

neighbor of the first cell; the obtained chain is called the ‘circular i-j chain’.

Observation 4. As shown in Figure 3, a circular chain is created when the algorithm

hits the first cell and then inspects the upper last cell hit[M] for a possible chain.

However, while using the one-dimensional array, the data in hit[M] is overwritten by

the time we reach the first cell hit[1] (as we are moving from right to left). Therefore,

at the end of the inner while-loop of the Algorithm 2, hit[M] is copied into unused

cell hit[0] to preserve the data. This further enables us to create a circular chain in

the same manner as with the one that creates a linear chain; i.e., when the algorithm
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hits at hit[1], the left neighbor hit[0] is inspected rather than the last cell hit[M]. Note

that neither Figures 2 nor 3 show Column 0.

Algorithm 2 Hit-index substring search (circular patterns):

Input: Pattern in the form of a shift array as shown in Figure 1, an integer k(1 ≤
k ≤ M), where k is the minimum length of the substring to be searched, and the

online text stream.

Output: all locations in the text where a substring length ≥ k of Pc is found, where

Pc is one of the conjugates of P such that 1 ≤ c ≤ M . The output is shown as each

text character is received.

Require: Let ‘node’ be structure with two fields: integer s, and node type pointer *next

Let ’cell’ be structure with two fields: integer len, and integer ts

integer i = 0, j, t, k, M, maxlen

array cell hit[ M+1 ]

for j = 0 to M do

hit[ j ].ts ← -1 /* Initialize array timestamp */

end for

while (Not end of text) do

j ← ASCII value of input text character

node *ptr ← shift[j] /*jump to jth link list in the shift array*/

maxlen ← 0, i ← i+1

while (ptr! = null) do

t ← (ptr→s)

hit[ t ].ts ← i

if (hit[t− 1].ts == (i− 1)) then

hit[ t ].len ← hit[ t-1 ].len + 1 /*increase chain-length */

else

hit[ t ].len ← 1 /*reset chain-length to 1*/

end if

if (hit[t].len > maxlen) then

maxlen←hit[ t ].len /*Keep track of largest chain*/

end if

ptr ←(ptr →next)

end while

hit[ 0 ].ts← hit[ M ].ts /*copy last cell’s data into unused cell 0*/

hit[ 0 ].len←hit[ M ].len

if (maxlen > M) then

maxlen ← M /*reset chain-length to M*/

end if

if (maxlen ≥ k) then

Print Substring length and Location: maxlen, i-maxlen + 1

end if

end while
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Figure 3. Algorithm 2 output for P = ABBAAB. Last column shows longest

substring (≤M) of P or one of its conjugates found in T

Observation 5. The maximum possible length of a pattern substring isM . However,

a circular chain can grow beyond the size of the pattern. Consider text 9B through

20A in Figure 3. Here, the pattern conjugates appear at successive text locations,

which results in the chain length growing to 12. Therefore, Algorithm 2 resets the

chain length to M whenever it grows beyond M , and it considers the last chain

segment of length = M to report the substring. The example given below clarifies this.

Example 2. In Figure 3, the initial set number reveals the identity of the conjugate.

For example, the first link of chain-segment ‘11-12-13-14-15-16’ lies within set R4,

which means that the discovered substring AABABB is P4, which is available at

T [11]. Now, consider circular chain ‘9-10-11-12-13-14-15-16-17-18-19-20’. The length

of the chain is 12, and the maximum possible length of a substring is M = 6. There-

fore, the first chain segment ‘9-10-11-12-13-14’ with a length of 6 represents substring

BBAABA, which is the conjugate P2 that is available at T [9]. Skipping the first link,

the next segment of a length of 6 (10-11-12-13-14-15) represents the next conjugate
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P3 = BAABAB at location T [10]. Continuing this pattern with the same chain,

we discover P4 = AABABB, P5 = ABABBA, P6 = BABBAA, P1 = ABBAAB,

and again P2 = BBAABA at successive text locations: T [11], T [12], T [13], T [14],

and T [15], respectively. All of the remaining chains of length < M represent smaller

substrings of P or its conjugates.

9. Time and space analysis

The pattern-preprocessing phase consists of creating a ‘shift-array’ (Fig. 1) of size σ

in which a total of M nodes are inserted. Inserting a node at the beginning of the list

takes O(1) time. Thus, the pattern-preprocessing phase consumes O(σ + M) space

and O(M) time. Both of the search algorithms require an additional array hit[M+1]

of size (M + 1) in the search phase. Hence, the total run-time memory requirement

of the algorithms is O(σ +M). Thus, the total run-time memory requirement of the

algorithms is independent of N , which is ideal for large applications.

Let us discuss the execution time of the proposed algorithms in the search phase.

The extended version of Algorithm 2 for circular patterns continued to have the same

time and space complexity as with Algorithm 1. Therefore, the discussion that follows

is applicable to both of the search algorithms given in Sections 7 and 8.

Let λi be the ith character in alphabet λ such that 1 ≤ i ≤ σ. Furthermore,

let fti and fpi represent the frequencies of λi in the text and pattern, respectively.

These frequencies can be expressed as follows:

ft1 + ft2 + . . . ftσ =

σ∑
i=1

fti = N . . . (1)

fp1 + fp2 + . . . fpσ =

σ∑
i=1

fpi = M . . . (2)

In the search phase, the algorithms read a text character and then jump to the

‘shift table’ to retrieve the shifts of the character in the pattern. For each shift ‘t′, both

of the algorithms stamp the array hit[t] with the current timestamp ‘i′. Therefore,

the execution time in the search phase is the sum of the time required to read all of

the N characters and the time consumed in stamping the array cells (which we will

call ‘hits′). As a rough estimation, this can be put as follows:

Execution T ime = N + Total number of hits induced . . . (3)

Using the frequencies given above, we can precisely compute the total number of hits

that are induced in the search process. For each input text character λi, the algorithm

retrieves fpi entries from the shift array. Because fti represents the frequency of λi

in the text, the total number of hits is given by the following:

Total hits induced = ft1fp1 + ft2fp2 . . .+ ftσfpσ =

σ∑
i=1

ftifpi . . . (4)
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Hence, using (3) and (4), the total execution Time:

total execution T ime = N +

σ∑
i=1

ftifpi . . . (5)

Let us now discuss a few particular cases.

Case 1. Consider a pattern of size M such thatM ≤ σ, and all of the characters in the

pattern are distinct; i.e., each fpi is either 0 or 1. Hence, the total number of hits =∑σ
i=1 = ftifpi = ft1fp1 + ft2fp2 . . . + ftσfpσ ≤ N using (1). And from (5),

the total execution time = N +
∑σ

i=1 ftifpi ≤ 2N , which is O(N).

Case 2. For a pattern of length M such that no character in the pattern is present

in the text; i.e., for each λi ∈ P, fti = 0. Then, the total hits =
∑σ

i=1 ftifpi = 0,

and from (5), the total execution time = N ≈ O(N).

Case 3. Consider a pattern that consists of M repetitions of a single char-

acter λi; i.e., all of the character-frequencies in the pattern are 0 except for

fpi = M . In this case, all of the products in Equation (4) are equal to 0 ex-

cept for ftifpi. Thus, the total hits =
∑σ

i=1 ftifpi = Mfti, and using (5),

The total execution time = N +Mfti, which is O(N +Mfti).

Case 4. Consider a rare situation when the entire text and pattern are made of

a single character λi. This means that a single character λi is repeatedM and N times

in P and T , respectively; i.e., all of the character frequencies in both P and T are 0

except for fpi = M and fti = N . Then, from (4),
∑σ

i=1 ftifpi = MN ≈ O(MN).

Case 5. Let us consider the average case. In the average case, the expected fre-

quencies fti and fpi of a character λi in the text and pattern are given by N/σ

and M/σ, respectively (where σ is the size of the alphabet). Therefore, from (4),

The expected number of hits = ft1fp1 + ft2fp2 + . . . ftσfpσ = [(N/σ)(M/σ)]σ =

MN/σ. And from (5), The total execution time = N +MN/σ ≈ O(MN/σ). There-

fore, for a pattern M ≤ σ, The expected execution time is ≤ 2N ≈ O(N).

Observation 6. While stamping the hit array, the character ‘A’ of the text is merely

compared to the same character ‘A’ of the pattern, which results in a better efficiency

of the algorithm.

10. Experimental results

In this section, we perform experiments to compare Algorithm 1 (given in Section 7)

with one of the state-of-the-art solutions that is based on the suffix automaton [3,6].

The suffix automaton is a data structure that simulates a DFA that is capable of

recognizing all of the suffixes of a pattern. For a given pattern P , a prefix of a suffix

of P is a substring of P . This means that a suffix automaton that recognizes all of

the suffixes of P automatically recognizes all of the substrings of P . For example,

consider pattern P = ‘banana’. The suffix set is ‘a’, ‘na’, ‘ana’, ‘nana’, ‘anana’, and

‘banana’ (we are not considering an empty string). The prefix of any of these suffixes
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is a substring of P . For example, we have the following prefixes for suffix ‘anana’: ‘a’,

‘an’, ‘ana’, ‘anana’. All of these are valid substrings of P . We now briefly explain

the experimental setup as well as the hardware, software, and test data that is used

to perform our experiments.

Hardware & Software: We performed our experiments on an ASUS laptop with

an Intel Core i7 CPU@2.5GHz, 8GB RAM, 64 bit Windows 10 Operating System

x64-Based processor. To compile our programs, we used MinGW – a native Windows

port of the GNU Compiler Collection (GCC) g ++ compiler.

Suffix Automaton: We used the forward directed acyclic word graph (DAWG)

matching algorithm given in [6] to create the suffix automaton. The ‘C’ language

version of the algorithm was downloaded from [7].

Test Data: We downloaded three text files from the ‘string matching algorithm

research tool’ (SMART tool) [8]. A brief description of these files is given below.

‘hs.txt’: The protein sequence database consists of repeated sequences of 20 let-

ters (A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y ), which represent amino

acids.

‘ecoli.txt’: The DNA database consists of repeated sequences of four letters

(A, C, G, and T ), which represent the four nucleotide bases of a DNA strand.

‘bible.txt’: Natural English language text characters ([a− z][A−Z]) with spaces

and punctuation.

Experimental Setup: In our experiments, we first stored the text and pattern

characters in arrays before applying the search. This was done to avoid reading

from the file during the search process, as the reading time from the files may vary

for different program runs. We used an array of a size of two million to read the

first two million characters of the biological databases into the array. However, for

‘bible.txt’ (which is small in size), the entire file of 30,382 characters was stored in

the array. Next, three different patterns of a particular size were chosen from the

text file. Then, a search was applied in the same file to record the search time for

each pattern. Following this, the mean search time was calculated. For example, we

first read 20 million characters of protein database ‘hs.txt’ in an array. Then, three

different samples of patterns of the same size 10 (P1, P2, P3) were randomly chosen

from the same file, and three program runs were applied to search each sample using

the respective algorithms to record the search time. Following this, the mean search

time for P1, P2, and P3 was calculated (refer to Figures 4a, 4b, and 4c). A similar

process was adopted for the remaining patterns of sizes from 20 to 120.

The corresponding graphs show a comparison between the mean run-times taken

by the algorithms for each pattern size (in seconds). Please note that the execution

time does not include the preprocessing time nor the time consumed in reading the

characters from the file in the array.
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Figure 4. Algorithm 1 vs Suffix Automaton

The graph given in Figure 4a shows that, for protein sequence database

‘hs.txt’, the ‘Hit-index substring search’ algorithm given in Section 7 performs better

against the suffix automaton for those patterns with sizes of less than 100. Following
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this, the suffix automaton starts to take over (less time-consuming). For natural lan-

guages such as ‘bible.txt’ a similar trend is shown in Figure 4b. Finally, Figure 4c

shows that, for DNA databases such as ‘ecoli.txt’, our algorithm remains competi-

tive until the pattern size reaches 30; beyond this, the suffix automaton takes the

lead. Notice that the ‘ecoli’ DNA database is drawn from just 4 letters, the protein

database is drawn from 20 letters, and the natural language database uses around 55

letters. From the given results, it is evident that the ‘Hit-Index substring search’

algorithm works well when the size of the pattern is less than 120 and the alphabet

size is reasonably large (refer to Case 6 of the ‘time space analysis’ section). Even for

those DNA databases with a small alphabet size of four (A,C,G, T ), the algorithm

remains competitive until the pattern size reaches 40. These results are in line with

the theoretical ‘time space analysis’ discussion given in the preceding section.

11. Conclusion

The suffix automaton is a magical data structure when all of the substrings (factors) of

a pattern need to be searched. However, this is one of the complex data structures that

needs some serious effort to implement and maintain. The use of such data structures

for a one-time search is a bit of overkill, as the implementation cost outweighs the

benefits that they provide. In such situations, the proposed algorithms can be a good

alternative; they provide easier solutions to output the substrings of a pattern as well

as its conjugates without making a serious investment in the preprocessing phase. The

algorithms that we have developed in this paper use simple data structures; therefore,

they are easy to implement and yet remain competitive in most cases. We have shown

that simple arrays can also prove to be tough competition for state-of-the-art data

structures without compromising efficiency.
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