PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hematological malignancies i.e. acute lymphoid leukemia and acute myeloid leukemia are the types of blood cancer that can affect blood, bone marrow, lymphatic system and are the major contributors to cancer deaths. In present work, an attempt has been made to design a CAC (computer aided classification system) for diagnosis of myeloid and lymphoid cells and their FAB (French, American, and British) characterization. The proposed technique improves the AML and ALL diagnostic accuracy by analyzing color, morphological and textural features from the blood image using image processing and to assist in the development of a computer-aided screening of AML and ALL. This paper endeavors at proposing a quantitative microscopic approach toward the discrimination of malignant from normal in stained blood smear. The proposed technique firstly segments the nucleus from the leukocyte cell background and then computes features for each segmented nucleus. A total of 331 geometrical, chromatic and texture features are computed. A genetic algorithm using support vector machine (SVM) classifier is used to optimize the feature space. Based on optimized feature space, an SVM classifier with various kernel functions is used to eradicate noisy objects like overlapped cells, stain fragments, and other kinds of background noises. The significance of the proposed method is tested using 331 features on 420 microscopic blood images acquired from the online repository provided by the American society of hematology. The results confirmed the viability or potential of using a computer aided classification method to reinstate the monotonous and the reader-dependent diagnostic methods.
Twórcy
autor
  • Department of Computer Science and Engineering, G B Pant Engineering College, Pauri Garhwal, Uttarakhand 246194, India
autor
  • Department of Computer Science and Engineering, G B Pant Engineering College, Pauri Garhwal, Uttarakhand 246194, India
  • Department of Computer Science and Engineering, G B Pant Engineering College, Pauri Garhwal, Uttarakhand 246194, India
autor
  • Council of Scientific & Industrial Research, Central Scientific Instruments Organization, Sec-30 C, Chandigarh, India
autor
  • Maharishi Markandeshwar Institute of Medical Sciences & Research, Department of Pathology, Solan, Himachal Pradesh, India
Bibliografia
  • [1] Dacie JV, Lewis SM. Practical haematology; 2002;52–3.
  • [2] Sadler JE. What's new in the diagnosis and pathophysiology of thrombotic thrombocytopenic purpura. ASH Educ Prog Book 2015;2015(December (1)):631–6.
  • [3] Singh G, Bathla G, Kaur S. Design of new architecture to detect leukemia cancer from medical images. Int J Appl Eng Res 2016;11(10):7087–94.
  • [4] Singhal V, Singh P. Texture features for the detection of acute lymphoblastic leukemia. Proceedings of International Conference on ICT for Sustainable Development. Singapore: Springer; 2016. p. 535–43.
  • [5] Zhang L, Wang QG, Qi JP. Processing technology in microscopic images of cancer cells in pleural fluid based on fuzzy edge detection method. Journal of Physics: Conference Series 2006 (Vol. 48, No. 1, p. 329); 2006.
  • [6] Viswanathan P, Fuzzy C. Means detection of leukemia based on morphological contour segmentation. Proc Comput Sci 2015;58(December):84–90.
  • [7] Amin MM, Kermani S, Talebi A, Oghli MG. Recognition of acute lymphoblastic leukemia cells in microscopic images using k-means clustering and support vector machine classifier. J Med Signal Sens 2015;5(January (1)):49.
  • [8] Neoh SC, Srisukkham W, Zhang L, Todryk S, Greystoke B, Lim CP, et al. An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images. Scientific reports; 2015;5.
  • [9] Bhattacharjee R, Saini LM. Robust technique for the detection of Acute Lymphoblastic Leukemia. 2015 IEEE Power, Communication and Information Technology Conference (PCITC); 2015. pp. 657–62.
  • [10] Li Y, Zhu R, Mi L, Cao Y, Yao D. Segmentation of white blood cell from acute lymphoblastic leukemia images using dual- threshold method. Comput Math Methods Med 2016;2016 (May).
  • [11] Rawat J, Singh A, Bhadauria HS, Virmani J. Computer aided diagnostic system for detection of leukemia using microscopic images. Proc Comput Sci 2015;70 (December):748–56.
  • [12] ElDahshan K, Youssef M, Masameer E, Mustafa MA. An efficient implementation of acute lymphoblastic leukemia images segmentation on the FPGA. Adv Image Video Process 2015;3(July (3)):8.
  • [13] Mohapatra S, Patra D, Satpathy S. An ensemble classifier system for early diagnosis of acute lymphoblastic leukemia in blood microscopic images. Neural Comput Appl 2014;24 (June (7–8)):1887–904.
  • [14] Putzu L, Caocci G, Di Ruberto C. Leucocyte classification for leukaemia detection using image processing techniques. Artif Intell Med 2014;62(November (3)):179–91.
  • [15] Aimi AN, Mashor MY, Rosline H. Classification of acute leukaemia cells using multilayer perceptron and simplified fuzzy ARTMAP neural networks. Int Arab J Inf Technol 2013;10(4):356–64.
  • [16] Putzu L, Di Ruberto C. White blood cells identification and classification from leukemic blood image. Proceedings of the IWBBIO International Work-Conference on Bioinformatics and Biomedical Engineering; 2013. p. 99–106.
  • [17] Pedreira CE, Macrini L, Land MG, Costa ES. New decision support tool for treatment intensity choice in childhood acute lymphoblastic leukemia. IEEE Trans Inf Technol B 2009;13(May (3)):284–90.
  • [18] Madhloom HT, Kareem SA, Ariffin H. A robust feature extraction and selection method for the recognition of lymphocytes versus acute lymphoblastic leukemia. 2012 International Conference on Advanced Computer Science Applications and Technologies (ACSAT); 2012. pp. 330–5.
  • [19] Mohapatra S, Patra D, Kumar S, Satpathy S. Lymphocyte image segmentation using functional link neural architecture for acute leukemia detection. Biomed Eng Lett 2012;2(June (2)):100–10.
  • [20] Mohapatra S, Samanta SS, Patra D, Satpathi S. Fuzzy based blood image segmentation for automated leukemia detection. 2011 International Conference on Devices and Communications (ICDeCom); 2011. pp. 1–5.
  • [21] Halim NH, Mashor MY, Hassan R. Automatic blasts counting for acute leukemia based on blood samples. Int J Res Rev Comput Sci 2011;2(August (4)).
  • [22] Mohapatra S, Patra D. Automated cell nucleus segmentation and acute leukemia detection in blood microscopic images. 2010 International Conference on Systems in Medicine and Biology (ICSMB); 2010. pp. 49–54.
  • [23] Mohapatra S, Patra D. Automated leukemia detection using hausdorff dimension in blood microscopic images. 2010 International Conference on Emerging Trends in Robotics and Communication Technologies (INTERACT); 2010. pp. 64–8.
  • [24] Scotti F. Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images. 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications; 2005. pp. 96–101.
  • [25] Sukanya CM, Paul V. AML detection in blood microscopic images using DRLBP and DRLTP feature extraction. Int J Eng Sci 2016;(June):6942.
  • [26] Agaian S, Madhukar M, Chronopoulos AT. Automated screening system for acute myelogenous leukemia detection in blood microscopic images. IEEE Syst J 2014;8 (September (3)):995–1004.
  • [27] Kazemi F, Najafabadi TA, Araabi BN. Automatic recognition of acute myelogenous leukemia in blood microscopic images using k-means clustering and support vector machine. J Med Signals Sens 2016;6(July (3)):183.
  • [28] Goutam D, Sailaja S. Classification of acute myelogenous leukemia in blood microscopic images using supervised classifier. 2015 IEEE International Conference on Engineering and Technology (ICETECH); 2015. pp. 1–5.
  • [29] Priya DK, Krithiga SR, Pavithra P, Kumar JR. Detection of leukemia in blood microscopic images using fuzzy logic. Int J Eng Res Sci Technol 2015;240.
  • [30] Belacel N, Vincke P, Scheiff JM, Boulassel MR. Acute leukemia diagnosis aid using multicriteria fuzzy assignment methodology. Comput Methods Prog Biomed 2001;64(February (2)):145–51.
  • [31] Reta C, Altamirano L, Gonzalez JA, Diaz-Hernandez R, Peregrina H, Olmos I, et al. Correction: segmentation and classification of bone marrow cells images using contextual information for medical diagnosis of acute leukemias. PLOS ONE 2015;10(7).
  • [32] Farag A. Computer based acute leukemia classification. Circuits and Systems, 2003 IEEE 46th Midwest Symposium on 2003, vol. 2; 2003. pp. 701–3.
  • [33] Madhloom HT, Kareem SA, Ariffin H. Computer-aided acute leukemia blast cells segmentation in peripheral blood images. J Vibroeng 2015;17(December (8)):4517–32.
  • [34] Bigorra L, Merino A, Alférez S, Rodellar J. Feature analysis and automatic identification of leukemic lineage blast cells and reactive lymphoid cells from peripheral blood cell images. J Clin Lab Anal )2016;(July).
  • [35] Gonzalez JA, Olmos I, Altamirano L, Morales BA, Reta C, Galindo MC, et al. Leukemia identification from bone marrow cells images using a machine vision and data mining strategy. Intell Data Anal 2011;15(January (3)):443–62.
  • [36] Cao G, Li L, Chen W, Yu Y, Shi J, Zhang G, et al. Effective identification and localization of immature precursors in bone marrow biopsy. Med Biol Eng Comput 2015;53(March (3)):215–26.
  • [37] Sarrafzadeh O, Rabbani H, Dehnavi AM, Talebi A. Detecting different sub-types of acute myelogenous leukemia using dictionary learning and sparse representation. 2015 IEEE International Conference on Image Processing (ICIP); 2015. pp. 3339–43.
  • [38] ASH Image Bank: American Society of Hematology. Available from: http://imagebank.hematology.org.
  • [39] Virmani J, Kumar V, Kalra N, Khandelwal N. Prediction of liver cirrhosis based on multiresolution texture descriptors from B-mode ultrasound. Int J Converg Comput 2013;1 (1):19–37.
  • [40] Sinha N, Ramakrishnan AG. Automation of differential blood count. TENCON 2003. Conference on Convergent Technologies for the Asia-Pacific Region, vol. 2; 2003. pp. 547–51.
  • [41] Kovalev VA, Grigoriev AY, Ahn HS. Robust recognition of white blood cell images. Proceedings of the 13th International Conference on Pattern Recognition, vol. 4; 1996. p. 371–5.
  • [42] Scotti F. Robust segmentation and measurements techniques of white cells in blood microscope images. 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings; 2006. p. 43–8.
  • [43] Madhloom HT, Kareem SA, Ariffin H, Zaidan AA, Alanazi HO, Zaidan BB. An automated white blood cell nucleus localization and segmentation using image arithmetic and automatic threshold. J Appl Sci 2010;10(November):959–66.
  • [44] Rawat J, Singh A, Bhadauria HS. An approach for leukocytes nuclei segmentation based on image fusion. 2014 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT); 2014. pp. 000456–61.
  • [45] Kumar I, Bhadauria HS, Virmani J, Rawat J. Reduction of speckle noise from medical images using principal component analysis image fusion. 2014 9th International Conference on Industrial and Information Systems (ICIIS); 2014. pp. 1–6.
  • [46] Sabino DM, da Fontoura Costa L, Rizzatti EG, Zago MA. A texture approach to leukocyte recognition. Real-Time Imaging 2004;10(August (4)):205–16.
  • [47] Gonzalez W, Woods RE. Eddins, digital image processing using MATLAB. Prentice Hall: Third New Jersey; 2004.
  • [48] Rawat J, Singh A, Bhadauria HS, Kumar I. Comparative analysis of segmentation algorithms for leukocyte extraction in the acute lymphoblastic leukemia images. 2014 International Conference on Parallel, Distributed and Grid Computing (PDGC); 2014. pp. 245–50.
  • [49] Mittal D, Kumar K. Automated detection and segmentation of drusen in retinal fundus images. Comput Electr Eng 2015;47:82–95.
  • [50] David HA. Order statistics. New York: John Willey & Sons; 1981.
  • [51] Saraswat M, Arya KV. Automated microscopic image analysis for leukocytes identification: a survey. Micron 2014;65:20–33.
  • [52] Chris A, Mulyawan B. A combination of feature selection and co-occurrence matrix methods for leukocyte recognition system. J Softw Eng Appl 2012;5(December):101.
  • [53] Yang M, Kpalma K, Ronsin J. A survey of shape feature extraction techniques. Pattern Recogn 2008;(November): 43–90.
  • [54] Han ZY, Gu DH, Wu QE. Feature extraction for color images. Electronics, Communications and Networks V. Singapore: Springer; 2016. p. 215–21.
  • [55] Haralick RM, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern 1973;(November (6)):610–21.
  • [56] Kriti VJ. Breast density classification using Laws' mask texture features. Int J Biomed Eng Technol 2015;19(3):279– 302.
  • [57] Laws KI. Rapid texture identification. 24th Annual Technical Symposium. International Society for Optics and Photonics; 1980. p. 376–81.
  • [58] Abenius T. Classification of cell images using MPEG-7- influenced descriptors and support vector machines in cell morphology. arXiv preprint arXiv:0812.2309. 2008 Dec 12.
  • [59] Lee CC, Chen SH. Gabor wavelets and SVM classifier for liver diseases classification from CT images. 2006 IEEE International Conference on Systems, Man and Cybernetics, vol. 1; 2006. pp. 548–52.
  • [60] Sivanandam SN, Deepa SN. Introduction to genetic algorithms. Springer Science & Business Media; 2007, October 24.
  • [61] Pham D, Karaboga D. Intelligent optimisation techniques: genetic algorithms, tabu search, simulated annealing and neural networks. Springer Science & Business Media; 2012, December 6.
  • [62] Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2011;2 (April (3)):27.
  • [63] Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press; 2000, March 23.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffc65ee2-fe4b-4f00-874f-057b58ebb1a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.