PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation aided design of intelligent machine tool components

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By integrating sensors and actuators, intelligent machine tool components can be realized, which allow the monitoring of machining processes and machine tool states and an active influencing of process conditions. In the design and layout of these intelligent machine tool components, their mechanical structure and the functional performance of the sensor and actuator sub-systems have to be optimized. As an example, a sensor and actuator integrated fixture system for clamping large but sensitive aerospace structural parts is presented here. In order to investigate the major influences of design approaches on the behaviour of the workpiece and fixture, especially with respect to vibrations and process stability during milling, multiple test rigs and prototypes for basic analyses and machining tests were developed and realized. Experimental and Finite Element Analysis (FEA) results are presented and discussed. Process simulations were conducted taking the dynamic behaviour of the clamped workpiece at different processing steps into account. This simulation can be used for predicting the limits of the process stability. An approach of sensor and actuator integration is described and test results are shown. The paper introduces a principle design and layout methodology for similar intelligent machine tool components.
Rocznik
Strony
5--33
Opis fizyczny
Bibliogr. 74 poz., rys., tab.
Twórcy
  • Otto-von-Guericke Univ. Magdeburg, Inst. of Manufacturing Technology and Quality Management (IFQ), Germany
  • TU Dortmund University, Institute of Machining Technology (ISF), Germany
autor
  • Otto-von-Guericke Univ. Magdeburg, Inst. of Manufacturing Technology and Quality Management (IFQ), Germany
autor
  • Otto-von-Guericke Univ. Magdeburg, Inst. of Manufacturing Technology and Quality Management (IFQ), Germany
autor
  • TU Dortmund University, Institute of Machining Technology (ISF), Germany
autor
  • TU Dortmund University, Institute of Machining Technology (ISF), Germany
Bibliografia
  • [1] ALTINTAS Y., KERSTING P., BIERMANN D., BUDAK E., DENKENA B., LAZOGLU I., 2014, Virtual process systems for part machining operations, CIRP Annals, 63/2, 585-606.
  • [2] ALTINTAS Y., BRECHER C., WECK M., WITT S., 2006, Virtual machine tool, CIRP Annals, 54/2, 651-675.
  • [3] BRECHER C., ESSER M., WITT S., 2009, Interaction of manufacturing process and machine tool, CIRP Annals, 58/2, 588-607.
  • [4] SCHWEINOCH M., JOLIET R., KERSTING P., ZABEL A., 2015, Heat input modeling and calibration in dry NC-milling processes, Prod. Eng. Res. Devel., 9, 495-504.
  • [5] TETI R., JEMIELNIAK K., O’DONNEL G., DORNFELD D., 2010, Advanced monitoring of machining operations, CIRP Annals, 59/2, 717-739.
  • [6] BRECHER C., QUINTANA G., RUDOLF T., CIURANA J., 2011, Use of NC kernel data for surface roughness monitoring in milling operations, Int. J. Adv. Manuf. Technol., 53, 953-962.
  • [7] MORGAN J., O’DONNEL G., 2014, A service-oriented reconfigurable process monitoring system – enabling cyber physical systems, Journal of Machine Engineering, 14/2, 116-129.
  • [8] OBORSKI P., 2015, Integration of advanced monitoring in manufacturing systems, Journal of Machine Engineering, 15/2, 55-68.
  • [9] ALBERTELLI P., GOLETTI M., TORTA M., SALEHI M., MONNO, M., 2015, Model-based broadband estimation of cutting forces and tool vibration in milling through in-process indirect multiple-sensors measurements, Int. J. Adv. Manuf. Technol., 82/5, 779-796.
  • [10] DENKENA B., KOELLER M., 2013, Simulation based parameterization for process monitoring of machining operations, Procedia CIRP, 12, 79-84.
  • [11] ALTINTAS Y., 1994, Direct adaptive control of end milling process, Int. J. Mach. Tools Manuf., 34/4, 461-472.
  • [12] ZHANG J.Z., CHEN, J.C., 2007, The development of an in-process surface roughness adaptive control system in end milling operations, Int. J. Adv. Manuf. Technol., 31, 877-887.
  • [13] RIDWAN F., XU X., HO F.C.L., 2012, Adaptive execution of an NC program with feed rate optimization, Int. J. Adv. Manuf. Technol., 63, 1117-1130.
  • [14] HOREJS O., MARES M., HORNYCH J., 2015, Real-time compensation of machine tool thermal errors including cutting process, Journal of Machine Engineering, 15/3, 5-18.
  • [15] NEUGEBAUER R., DENKENA B., WEGENER K., 2007, Mechatronic systems for machine tools, CIRP Annals, 56/2, 657-686.
  • [16] DENKENA B., MÖHRING H.-C., LITWINSKI K.M., 2008, Design of dynamic multi sensor systems, Prod. Eng. Res. Devel., 2, 327-331.
  • [17] MÖHRING H.-C., LITWINSKI K.M., GÜMMER O., 2010, Process monitoring with sensory machine tool components, CIRP Annals, 59/1, 383-386.
  • [18] MÖHRING H.-C., GÜMMER O., FISCHER R., 2011, Active error compensation in contour-controlled grinding, CIRP Annals, 60/1, 429-432.
  • [19] DENKENA B., LITWINSKI K.M., BROUWER D., BOUJNAH H., 2013, Design and analysis of a prototypical sensory Z-slide for machine tools, Prod. Eng. Res. Devel., 7, 9-14.
  • [20] BIERMANN D., KERSTING P., SURMANN T., 2010, A general approach to simulating workpiece vibrations during five-axis milling of turbine blades, CIRP Annals, 59/1, 125-128.
  • [21] RAMESH R., RAVI KUMAR K.S., ANIL G., 2009, Automated intelligent manufacturing system for surface finish control in CNC milling using support vector machines, Int. J. Adv. Manuf. Technol., 42, 1103-1117.
  • [22] HENSE R., BAUMANN J., SIEBRECHT T., KERSTING P., BIERMANN D., MÖHRING H.-C., 2015, Simulation of an active fixture system for preventing workpiece vibrations during milling, Proceedings of the 4th International Conference on Virtual Machining Process Technology (VMPT 2015), Vancouver, Canada.
  • [23] LEZANSKI P., RAFALOWICZ J., 1993, An intelligent monitoring system for cylindrical grinding, CIRP Annals, 42/1, 393-396.
  • [24] VARGHESE B., PATHARE S., GAO R., GUO C., MALKIN S., 2000, Development of a sensor-integrated „intelligent“ grinding wheel for in-process monitoring, CIRP Annals, 49/1, 231-234.
  • [25] CUS F., MILFELNER M., BALIC, J., 2006, An intelligent system for monitoring and optimization of ball-end milling process, Journal of Materials Processing Technology, 175, 90-97.
  • [26] KRUSZYNSKI B.W., LAJMERT, P., 2005, An intelligent supervision system for cylindrical traverse grinding, CIRP Annals, 54/1, 305-308.
  • [27] MITSUISHI M., WARISAWA S., HANAYAMA R., 2001, Development of an intelligent high speed machining center, CIRP Annals, 50/1, 275-280.
  • [28] TETI R., KUMARA S.R.T., 1997, Intelligent computing methods for manufacturing systems, CIRP Annals, 46/2, 629-652.
  • [29] MANNAN M.A., SOLLIE J.P., 1997, A force-controlled clamping element for intelligent fixturing, CIRP Annals, 46/1, 265-268.
  • [30] KANAI S., SUGAWARA M., SAITO K., 1989, The development of the intelligent machining cell, CIRP Annals, 38/1, 493-496.
  • [31] NEWMAN S.T., NASSEHI, A., 2009, Machine tool capability profile for intelligent process planning, CIRP Annals, 58/1, 421-424.
  • [32] JEDRZEJEWSKI J., KWASNY W., 2015, Discussion of machine tool intelligence based on selected concepts and research, Journal of Machine Engineering, 15/4, 5-26.
  • [33] HATAMURA Y., NAGAO T., MITSUISHI M., NAKAO M., 1995, Actual conceptional design process for an intelligent machining center, CIRP Annals, 44/1, 123-128.
  • [34] VDI 2206, Design Methodology for Mechatronic Systems, Beuth-Verlag GmbH, Berlin.
  • [35] DUMITRESCU R., ANACKER H., GAUSEMEIER J., 2013, Design framework for the integration of cognitive functions into intelligent technical systems, Prod. Eng. Res. Devel., 7, 111-121.
  • [36] BARBIERI G., GOLDONI G., BORSARI R., FANTUZZI, C., 2015, Modelling and simulation for the integrated design of mechatronic systems, IFAC-PapersOnLine, 48/10, 75-80.
  • [37] CASNER D., HOUSSIN R., RENAUD J., KNITTEL D., 2015, Optimization as an innovative design approach to improve the performances and the functionalities of mechatronic devices, World Conference, TRIZ FUTURE, TF 2011-2014, Procedia Engineering, 131, 941-950.
  • [38] CHAMI M., BRUEL J.-M., 2015, Towards an integrated conceptual design evaluation of mechatronic systems: The SysDICE approach, ICCS 2015 International Conference on Computational Science, Procedia Computer Science, 51, 650-659.
  • [39] JEDRZEJEWSKI J., KACZMAREK J., KOWAL Z., WINIARSKI Z., 1990, Numerical optimization of thermal behaviour of machine tools, CIRP Annals, 39/1, 379-382.
  • [40] WEULE H., FLEISCHER J., NEITHARDT W., EMMRICH D., JUST D., 2003, Structural optimization of machine tools including the static and dynamic workspace behavior, The 36th CIRP-International Seminar on Manufacturing Systems, 03-05 June, 2003, Saarbruecken, Germany.
  • [41] GROCHE P., SCHNEIDER R., 2004, Method for the optimization of forming presses for the manufacturing of micro parts, CIRP Annals, 53/1, 281-284.
  • [42] HUO D., CHENG K., WARDLE F., 2010, A holistic integrated dynamic design and modelling approach applied to the development of ultraprecision micro-milling machines, Int. J. Mach. Tools Manuf., 50, 335-343.
  • [43] ZULAIKA J.J., CAMPA F.J., LOPEZ DE LACALLE L.N., 2011, An integrated process-machine approach for designing productive and lightweight milling machines, Int. J. Mach. Tools Manuf., 51, 591-604.
  • [44] KOLAR P., SMOLIK J., SULITKA M., SINDLER J., HOVORKA J., 2012, An integrated approach to the development of machine tool structural parts, MATAR2012-12082, MM Science Journal. 9th International Conference on Machine Tools, Automation, Technology and Robotics, 12-14 September, 2012, Prague, Czech Republic.
  • [45] FORTUNATO A., ASCARI A., 2013, The virtual design of machining centers for HSM: Towards new integrated tools, Mechatronics, 23, 264-278.
  • [46] FLEISCHER J., DENKENA B., WINFOUGH B., MORI M., 2006, Workpiece and tool handling in metal cutting machines, CIRP Annals, 55/2, 2006.
  • [47] ABELLAN-NEBOT J.V., LIU J., SUBIRON R., 2012, Quality prediction and compensation in multi-station machining processes using sensor-based fixtures, Robotics and Computer-Integrated Manufacturing, 28, 208-219.
  • [48] DENKENA B., DAHLMANN D., KIESNER J., 2014, Sensor integration for a hydraulic clamping system, Procedia Technology, 15, 465-473.
  • [49] DENKENA B., FISCHER R., DEGE J.H., GÜMMER O., 2013, Precise compensation of component distortion by an adaptive clamping system, Proceedings of the 13th euspen International Conference, May 2013, Berlin, Germany.
  • [50] LI Y., LIU C., HAO X., GAO J.X., MAROPOULOS P.G., 2015, Responsive fixture design using dynamic product inspection and monitoring technologies for the precision machining of large-scale aerospace parts, CIRP Annals, 64/1, 173-176.
  • [51] NEE A.Y.C., SENTHIL KUMAR A., TAO Z.J., 2000, An intelligent fixture with a dynamic clamping scheme, Proceedings of the Institution of Mechanical Engineers, 214/B, 183-196.
  • [52] ABELE E., HANSELKA H., HAASE F., SCHLOTE D., SCHIFFLER A., 2008, Development and design of an active work piece holder driven by piezo actuators, Prod. Eng. Res. Devel., 2, 437-442.
  • [53] LI B., MELKOTE S.N., 1999, Improved workpiece location accuracy through fixture layout optimization, Int. J. Mach. Tools Manuf., 39, 871-883.
  • [54] JAYARAM S., EL-KHASAWNEH B.S., BEUTEL D.E., 2000, A fast analytical method to compute optimum stiffness of fixturing locators, CIRP Annals, 49/1, 317-320.
  • [55] WANG H., RONG Y., LI H., SHAUN P., 2010, Computer aided fixture design: Recent research and trends, Computer-Aided Design, 42, 1085-1094.
  • [56] BOYLE I., RONG Y., BROWN D., 2011, A review and analysis of current computer-aided fixture design approaches, Robotics and Computer-Integrated Manufacturing, 27, 1-12.
  • [57] WANG B.F., NEE A.Y.C., 2011, Robust fixture layout with the multi-objective non-dominated ACO/GA approach, CIRP Annals, 60/1, 183-186.
  • [58] VASUNDARA M., PADMANABAN K.P., SABAREESWARAN M., RAJ GANESH M., 2012, Machining fixture layout design for milling operation using FEA, ANN and RSM, Procedia Engineering 38, 1693-1703.
  • [59] WAN X.J., ZHANG Y., 2013, A novel approach to fixture layout optimization on maximizing dynamic machinability, Int. J. Mach. Tools Manuf., 70, 32-44.
  • [60] RATCHEV S., PHUAH K., LIU S., 2007, FEA-based methodology for the prediction of part-fixture behaviour and its applications, Journal of Materials Processing Technology, 191, 260-264.
  • [61] DENG H., MELKOTE S.N., 2005, Modeling of fixturing dynamic stability accounting for material removal effect, Transactions of NAMRI/SME, 33, 289-296.
  • [62] DENG H., MELKOTE S.N., 2006, Determination of minimum clamping forces for dynamically stable fixturing, Int. J. Mach. Tools Manuf., 46, 847-857.
  • [63] ZENG S., WAN X., LI W., YIN Z., XIONG Y., 2012, A novel approach to fixture design on suppressing machining vibration of flexible workpiece, Int. J. Mach. Tools Manuf., 58, 29-43.
  • [64] WAN X.J., ZHANG Y., HUANG X.D., 2013, Investigation of influence of fixture layout on dynamic response of thin-wall multi-framed work-piece in machining, Int. J. Mach. Tools Manuf., 75, 87-99.
  • [65] PAPASTATHIS T., BAKKER O., RATCHEV S., POPOV A., 2012, Design methodology for mechatronic active fixtures with movable clamps, Procedia CIRP, 3, 323-328.
  • [66] KOHLHOFF T., SÖLTER J., BRINKSMEIER E., 2011, Influence of the turning process on the distortion of disks for gear manufacture, Prod. Eng. Res. Devel., 5, 613-620.
  • [67] DENKENA B., BOEHNKE D., DE LEON L., 2008, Machining induced residual stress in structural aluminum parts, Prod. Eng. Res. Devel., 2, 247-253.
  • [68] DENKENA B., NESPOR D., BÖß V., KÖHLER J., 2014, Residual stresses formation after re-contouring of welded Ti-6Al-4V parts by means of 5-axis ball nose end milling, CIRP Journal of Manufacturing Science and Technology, 7, 347-360.
  • [69] FAVERJON P., RECH J., VALIORGUE F., ORSET M., 2015, Optimization of a multi-drilling sequence with MQL supply to minimize thermal distortion of aluminum parts, Journal of Machine Engineering, 15/3, 75-89.
  • [70] LEOPOLD M., HENSE R., MÖHRING H.-C., KERSTING P., 2015, Intelligente Werkstückspannsysteme für die verzugsfreie Fertigung dünnwandiger Aluminiumbauteile, Tagungsband 12. Magdeburger Maschinenbau-Tage, 30.09.-1.10.2015, Magdeburg, Germany.
  • [71] MÖHRING H.-C., BRECHER C., ABELE E., FLEISCHER J., BLEICHER F., 2015, Materials in machine tool structures, CIRP Annals – Manuf. Techn., 64/2, 725-748.
  • [72] KERSTING P., ODENDAHL S., 2013, Capabilities of a process simulation for the analysis of five-axis milling processes in the aerospace industry, 18th International Seminar on High Technology, 10.10.2013 Piracicaba, Brazil.
  • [73] KERSTING P., BIERMANN D., 2014, Modeling techniques for simulating workpiece deflections in NC milling, CIRP Journal of Manufacturing Science and Technology, 7/1, 48-54.
  • [74] KERSTING P., BIERMANN D., 2012, Modeling workpiece dynamics using sets of decoupled oscillator models, Machining Science and Technology, 16/4, 564-579.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffc5fb79-296a-4be3-b94d-d21946becf69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.