PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discrete-Pulsed Energy Input Based Method for Neutralisation of the Acidic Condensate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article's authors analysed the most perspective and widely known methods of neutralising the acidic condensate, which is a by-product of natural gas combustion. Among them, the hydrodynamic cavitation method was the most effective. In this regard, it was proposed to improve this method by using the method of discrete-pulsed energy input, which involves neutralisation due to the degassing process. Based on the mathematical model of the bubble ensemble dynamics, a numerical simulation of the formation and growth of vapour-gas bubbles in the process of cavitation boiling of condensate was carried out. Also, an analytical study of the evolution of the vapour-gas bubble population and changes in the current vapour content of the condensate during its boiling was investigated under different values of the initial size of gas micronuclei. The results of the experimental study also confirmed the effectiveness of this method and showed that almost complete removal of carbonic acid from condensate occurs during the first two minutes of processing. That is evidenced by the increased pH values of condensate, which corresponds to the range of permissible pH values of distilled water. Therefore, the carbonic acid in the condensate is absent. Using this method will significantly reduce the environmental effect and the amount of harmful emissions.
Rocznik
Tom
Strony
215--221
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Institute of Engineering Thermophysics of NAS Ukraine, Ukraine
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
  • Institute of Engineering Thermophysics of NAS Ukraine, Ukraine
  • Institute of Engineering Thermophysics of NAS Ukraine, Ukraine
  • Institute of Engineering Thermophysics of NAS Ukraine, Ukraine
  • Institute of Engineering Thermophysics of NAS Ukraine, Ukraine
  • Institute of Engineering Thermophysics of NAS Ukraine, Ukraine
Bibliografia
  • Akolzin, P.A. (1998). Prevention of corrosion of technical water and heat supply equipment. Moscow: Metallurgy. (in Russian)
  • Brennen, Ch.E. (1995). Cavitation and Bubble Dynamics. New York: Oxford University Press.
  • Bukowska, M., Nowak, K., Proszak-Miąsik, D., Rabczak, S. (2017). Concept of heat recovery from exhaust gases. IOP Conference Series: Materials Science and Engineering, 245(5), 052057. https://doi.org/10.1088/1757-899X/245/5/052057
  • Carpenter, J., Badve, M., Rajoriya, S., George, S., Saharanand, V., Pandit, A.B. (2016). Hydrodynamic cavitation: an emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Review in Chem. Engineering, 33(5), 1-36. https://doi.org/10.1515/revce-2016-0032
  • Dolinskiy, A.A., Ivanitsky, G.K. (2008). Heat and mass transfer and hydrodynamics in vapor-liquid dispersed media. Physical foundations of discrete-pulse energy input. Kiev: PH “Naukova dumka”. (in Russian)
  • Eskin, D.G. (2017). Overview of ultrasonic degassing development. Light Metals, in.: The Minerals, Metals & Materials Series. Springer, Cham. 1437-1443, https://doi.org/10.1007/978-3-319-51541-0_171
  • Galustov, V.S. (2004). About water decarbonisation. Аkva-Term, 5(21), 76-79.
  • Ivanitsky, G.K., Tselen, B.Ya., Nedbaylo, A.E., Konyk, A.V. (2019). Modeling the kinetics of cavitation boiling up of liquid. Physics of aerodisperse systems, 57, 136-146. http://dx.doi.org/10.18524/0367 1631.2019.57.191970
  • Ivanitsky, G.K., Tselen, B.Ya., Nedbaylo, A.E., Gozhenko, L.P. (2020). The ways of producing an unified mathematical model for the cavitating flow in hydrodynamic cavitation reactors. Thermophysics and Thermal Power Engineering, 42(2), 31-38. https://doi.org/10.31472/ttpe.2.2020.3
  • Rooze, J. (2012). Cavitation in gas-saturated liquids. [Dissertatie 1 (Onderzoek TU/e / Promotie TU/e), Chemical Engineering and Chemistry]. Technische Universiteit Eindhoven. http://doi.org/10.6100/IR732583
  • Rozenberg, L.D. (1973). Liberation of Free Gas from a Liquid. In: Rozenberg, L.D. (eds), Physical Principles of Ultrasonic Technology. Ultrasonic Technology, 1. (422-443). Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8217-1_20
  • Sharapov, V.I. (2008). Problems of thermal deaeration of water for heat supply systems. Heat Supply News, 94(6), 46-53. (in Russian)
  • Sharapov, V.Y., Syvukhyna, M.A. (2002). Calciners for water treatment plants of heat supply systems. Moscow: PH ACB. (in Russian)
  • Zaporozhets, A.O., Babak, V.P. (2020). Control of fuel combustion in small and medium power boilers. Kyiv: Akademperiodyka.
  • Zhuk, N.P. (1996). Course of corrosion and protection of metals. Moscow: Metallurgy. (in Russian)
  • Yefimov, A.V., Goncharenko, A.L., Goncharenko, L.V., Yesipenko, T.A. (2017). Modern technologies of deep cooling combustion products fuel in boiler installations, their problems and solutions. Kharkov: Kharkov Technical University "KhPI", Ukraine. http://repository.kpi.kharkov.ua/handle/KhPI-Press/32826 (in Russian)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffbf81e0-ee1e-4a43-81cd-b238287f825e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.