PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study of the wear behaviour of a metal carbide tool in turning by dimensionless analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this article, we present the experimental results with a dimensionless analysis of the wear behavior of a metal carbide tool in a turning operation. Design/methodology/approach: The highlighting of the dimensional input and output parameters of the experimental tests to bring out the different adimensional parameters. Regarding the input parameters, we have the rotational velocity (N), the feed (f), the depth of cut (ap), the machining time (t). The output parameters are defined by the flow rate (DC), the volume of the used tip (VU), the face wear (VB), as well as the cutting power (PC) and that of the machine (PM). Findings: The dimensionless approach allowed us to find the desired cutting conditions as well as the possibility of working in ranges of cutting conditions for known wear, which is not possible with a dimensional analysis. It should be noted that the appropriate choice of these parameters was essential to achieve these results. Research limitations/implications: The existence of a working range proposed by this analysis leads us to the proposal of a model and a numerical optimization. Practical implications: This work offers the desired compromise of adequate cutting conditions during machining. Originality/value: Deduction of adequate cutting conditions with minimum wear. Among other things, we can extrapolate the results to offer us compromises in the choice of ranges of cutting conditions.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • E.N.P.O. - National Polytechnic School of Oran, Oran, Algeria
autor
  • b L.S.M.C. - Tribology and Nano-tribology Team, Department of Physics, Oran University, Oran, Algeria
  • E.N.P.O. - National Polytechnic School of Oran, Oran, Algeria
Bibliografia
  • [1] V. Diamandiev, On the Wear of a Tribosystem, Journal of Theoretical and Applied Mechanics (Sofia) 26/4 (1996) 19-23.
  • [2] M.C. Shaw, Metal Cutting Principles, Oxford Science Publications, New York, 2005.
  • [3] S. Senhadji, F. Belarifi, F. Robbe-Valloire, Experimental Investigation of Friction Coefficient and Wear Rate of Brass and Bronze under Lubrication Conditions, Tribology in Industry 38/1 (2016) 102-107.
  • [4] S. Cheon, N. Kim, Prediction of tool wear in the blanking process using updated geometry, Wear 352- 353 (2016) 160-170. DOI: https://doi.org/10.1016/j.wear.2016.01.024
  • [5] V. Marinov, Experimental study on the abrasive wear in metal cutting, Wear 197/1-2 (1996) 242-247. DOI: https://doi.org/10.1016/0043-1648(96)06957-8
  • [6] L.-J. Xie, J. Schmidt, C. Schmidt, F. Biesinger, 2D FEM estimate of tool wear in turning operation, Wear 258/10 (2005) 1479-1490. DOI: https://doi.org/10.1016/j.wear.2004.11.004
  • [7] A. Molinari, D. Dudzinski, Stationary shear band in high speed machining, Comptes Rendus de l'Académie des Sciences - Series II 315 (1992) 399-405 (in French).
  • [8] A. Molinari, M. Nouari, Modeling of tool wear by diffusion in metal cutting, Wear 252/1-2 (2002) 135-149. DOI: https://doi.org/10.1016/S0043-1648(01)00858-4
  • [9] S.K. Khrais, Y.J. Lin, Wear mechanisms and tool performance of TiAlN PVD coated inserts during machining of AISI 4140 steel, Wear 262/1-2 (2007) 64- 69. DOI: https://doi.org/10.1016/j.wear.2006.03.052
  • [10] M. Boujelbene, E. Bayraktar , W. Tebni, S. Ben Salem, Influence of machining parameters on the surface integrity in electrical discharge machining, Archives of Materials Science and Engineering 37/2 (2009) 110- 116.
  • [11] N.V. Ferdinandov, D.D. Gospodinov, Hardfacing of metal-cutting tools by arc welding in vacuum, Journal of Achievements in Materials and Manufacturing Engineering 99/2 (2020) 49-56. DOI: https://doi.org/10.5604/01.3001.0014.1775
  • [12] L.A. Dobrzański, M. Staszuk, J. Konieczny, W. Kwaśny, M. Pawlyta, Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics, Archives of Materials Science and Engineering 38/1 (2009) 48-54.
  • [13] F.D. Amier, Behavioral study of the part tool in turning, MSc thesis, Polytechnic School of Oran, Algeria, 2014.
  • [14] D. Dudzinski, A. Molinari, A modelling of cutting for viscoplastic materials, International Journal of Mechanical Sciences 39/4 (1997) 369-389. DOI: https://doi.org/10.1016/S0020-7403(96)00043-4
  • [15] B. Li, A review of tool wear estimation using theoretical analysis and numerical simulation technologies, International Journal of Refractory Metals and Hard Materials 35 (2012) 143-151. DOI: https://doi.org/10.1016/j.ijrmhm.2012.05.006
  • [16] L. Filice, F. Micari, L. Settineri, D. Umbrello, Wear modelling in mild steel orthogonal cutting when using uncoated carbide tools, Wear 262/5-6 (2007) 545-554. DOI: https://doi.org/10.1016/j.wear.2006.06.022
  • [17] F. Salvatore, S. Saad, H. Hamdi, Modeling and simulation of tool wear during the cutting process, Procedia CIRP 8 (2013) 305-310. DOI: https://doi.org/10.1016/j.procir.2013.06.107
  • [18] B.A. Lyashenko, Z.A. Stotsko, O.A. Kuzin, M.O. Kuzin, O.A. Mikosianchyk, Determination of the optimal parameters of the structure of functional gradient materials using mathematical modelling approaches, Journal of Achievements in Materials and Manufacturing Engineering 92/1-2 (2019) 13-18. DOI: https://doi.org/10.5604/01.3001.0013.3183
  • [19] S. Delijaicov, F. Leonardi, E.C. Bordinassi, G.F. Batalha, Improved model to predict machined surface roughness based on the cutting vibrations signal during hard turning, Archives of Materials Science and Engineering 45/2 (2010) 102-107.
  • [20] Y.-C. Yen, J. Söhner, B. Lilly, T. Altan, Estimation of tool wear in orthogonal cutting using the finite element analysis, Journal of Materials Processing Technology 146/1 (2004) 82-91. DOI: https://doi.org/10.1016/S0924-0136(03)00847-1
  • [21] M. Afrasiabi, M. Roethlin, H. Klippel, K. Wegener, Meshfree simulation of metal cutting: an updated Lagrangian approach with dynamic refinement, International Journal of Mechanical Sciences 160 (2019) 451-466. DOI: https://doi.org/10.1016/j.ijmecsci.2019.06.045
  • [22] M. Afrasiabi, H. Klippel, M. Roethlin, K. Wegener, An improved thermal model for SPH metal cutting simulations on GPU, Applied Mathematical Modelling 100 (2021) 728-750. DOI: https://doi.org/10.1016/j.apm.2021.08.010
  • [23] M. Afrasiabi, L. Meier, M. Röthlin, H. Klippel, K. Wegener, GPU-accelerated meshfree simulations for parameter identification of a friction model in metal machining, International Journal of Mechanical Sciences 176 (2020) 105571. DOI: https://doi.org/10.1016/j.ijmecsci.2020.105571
  • [24] M. Guediche, Modeling and Simulation of Cutting Tool Wear during the Material Removal Process: Experimental and Numerical Approach (MOSUOC), PhD Thesis, University of Lyon, France, 2017.
  • [25] F. Belarifi, J. Blouet, G. Inglebert, A. Benamar, Confrontation between a mixed lubrication model and an experimental survey on the behaviour to the friction of spur gear teeth, Mécanique & Industries 7/5-6 (2006) 527-536 (in French). DOI: https://doi.org/10.1051/meca:2007010
  • [26] A. Chevalier, J. Bohan, Mechanical Manufacturing Tech-nician's Guide, Hachette Technique, 1979 (in French).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffb71fc0-e67d-4e31-8458-b77d80ebc63e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.