PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling the impact of surface currents in a harbor using graph theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ensuring security in a harbor requires research into its infrastructure using spatial environmental data. This paper presents a methodology that defines the design of a graph for modeling the interactions between surface currents and moving objects. Combining this graph with port charts that integrate electronic navigation charts with coastal orthophotographs allows us to perform a multidimensional analysis. In addition, the complete information about navigation and harbor infrastructure allows us to predict the effects of currents on objects that are moving in the dock. The capabilities of this application were tested in the Gdynia harbor and the defined graph is based on sea currents generated by the numerical hydrodynamic model M3D.
Rocznik
Strony
189--196
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • Maritime University of Szczecin 1–2 Wały Chrobrego St., 72-500 Szczecin, Poland
  • Polish Academy of Science, Sopot & Univeristy of Gdansk
autor
  • Gdańsk University of Technology 11–12 Narutowicza St., 80-233 Gdańsk, Poland
autor
  • Maritime University of Szczecin 1–2 Wały Chrobrego St., 72-500 Szczecin, Poland
autor
  • Maritime University of Szczecin 1–2 Wały Chrobrego St., 72-500 Szczecin, Poland
Bibliografia
  • 1. Breivik, Ø. & Allen, A. (2008) An operational search and rescue model for the Norwegian Sea and the North Sea. Journal of Marine Systems 69 (1–2). pp. 99–113.
  • 2. Clementini, E. & Billen, R. (2006) Modeling and computing ternary projective relations between regions. IEEE Trans. on Knowledge and Data Eng. 18. pp. 799–814.
  • 3. Cruz Guzman, J.J., Lewandowicz, E. & Oziewicz, Z. (2006) Multiscale Geographic Information with Multigraph of Multigraphs. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. ISPRS Technical Commission II Symposium. 36 Part 2. pp. 55–60.
  • 4. Egenhofer, M. (2010) The family of conceptual neighborhood graphs for region-region relations. GIScience’10. Proceedings of the 6th international conference on Geographic Information Science. pp. 42–55.
  • 5. Elken, J., Nömm, M. & Lagemaa, P. (2011) Circulation patterns in the Gulf of Finland derived from the EOF analysis of model results. Boreal Environment Research 16 (suppl. A). pp. 84–102.
  • 6. Funkquist, L. (2001) HIROMB, an operational eddy-resolving model for the Baltic Sea. Bulletin of Maritime Institute 29 (2), Gdańsk. pp. 7–16.
  • 7. Gauss, B., Rötting, M. & Kersandt, D. (2012) NARIDAS – Evaluation of a risk assessment system for the ship’s bridge. Forum-Schiffsfuehrung.com.
  • 8. Kowalewski, M. (1997) A three-dimensional hydrodynamic model of the Gulf of Gdansk. Oceanological Studies 26 (4). pp. 77–98.
  • 9. Kowalewski, M. & Kowalewska-Kalkowska, H. (2011) Performance of operationally calculated hydrodynamic forecasts during storm surges in the Pomeranian Bay and Szczecin Lagoon. Boreal Environment Research 16 (suppl. A). pp. 27–41.
  • 10. Kozioł, Ł. (2002) Research of suitability graph theory in construction of region for roads network. Geodezja 8(1), Akademia Górniczo-Hutnicza im. St. Staszica w Krakowie. pp. 47–56.
  • 11. Packa, A. & Lewandowicz, E. (2010) Methods of bike trails analysis in different network structure. Annals of Geomatics 8(6), 42. pp. 101–109.
  • 12. Paplińska, B. (1999) Wave analysis at Lubiatowo and in the Pomeranian Bay based on measurements from 1997/1998 – comparison with modeled data (WAM4 model). Oceanologia 41 (2). pp. 241–254.
  • 13. Port Information Guide (2013) Rotterdam. [Online] Available from: http://www.portofrotterdam.com/en/shipping/ sea-shipping/port-information/documents/port_information_guide.pdf [Accessed: May 15, 2016]
  • 14. Pyrchla, J. (2008) Application of the Fuzzy Set Theory to the Representation of the Visual Information in Support of the Localization of Objects on the Sea Surface. Cracow: AGH University of Science and Technology Press. 184.
  • 15. Pyrchla, J. & Kowalewski, M. (2009) Accuracy of hydrodynamic models of the Baltic Sea and safety in the Polish SAR responsibility area. Archiwum Fotogrametrii, Kartografii i Teledetekcji 19. pp. 373–385.
  • 16. Pyrchla, J. & Przyborski, M. (2003) Reliability of the Navigational Data. Intelligent Information Processing and Web Mining. Proc. of the International IIS: IIPWM’03 Conference held in Zakopane. Springer Verlag Series on Advances in Soft Computing. 22. pp. 541–545.
  • 17. Pyrchla, J. & Przyborski, M. (2011) Environmental geographic information system as an element of security operations in the coastal zone. Annals of Geomatics 9(1). pp. 103–114.
  • 18. Reissmann, J. H., Burchard, H., Feistel, R., Hagen, E., Lass, H.U., Mohrboltz, V., Nausch, G., Umlauf, L. & Wieczorek, G. (2009) Vertical mixing in the Baltic Sea and consequences for eutrophication – a review. Progress of Oceanography 82(1). pp. 47–80.
  • 19. Thakur, A., Svec, P. & Gupta, S.K. (2012) GPU based generation of state transition models using simulations for unmanned surface vehicle trajectory planning. Robotics and Autonomous Systems 60(12). pp. 1457–1471.
  • 20. Winterwerp, J.C. (2006) Stratification effects by fine suspended sediment at low, medium, and very high concentrations. Journal of Geophysical Research. Oceans. 111(C05012). doi:10.1029/2005JC003019.
  • 21. Yearbook (2012) Statistical Yearbook of Maritime Economy 2012. Warszawa–Szczecin: GUS.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffb1e198-7139-487d-b577-a6241947dfe4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.