PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Merging the gravity fields of the GRACE Follow-On Science Data System project using different weighting approaches

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For over two decades, an essential information about global monthly gravity variations is provided by the GRACE mission and its successor, the GRACE Follow-On (GRACE-FO) mission. The temporal variations in gravity field from GRACE/GRACEFO are determined based on the measurement of distance changes between two identical satellites using microwave ranging instruments. This process is carried out by various processing centers, which adopt different processing strategies and background models. This causes discrepancies in the resulting gravity fields.We address this problem by determining a monthly homogenous GRACE-FO gravity field solutions from June 2018 to November 2022 as provided by different processing centers included in the Science Data System (SDS) project, i.e. the Center for Space Research (CSR), the German Research Center for Geosciences (GFZ) and the Jet Propulsion Laboratory (JPL). We test three different weighting schemes. We show that for the last 4 years, at least 65% of continental areas are characterized by water decrease. We show that proposed merged solutions contain more signal information than individual ones based on the square root of the degree variance values.We note that the largest signal differences between individual and combined solutions occur for sectoral coefficients up to degree 40, and for zonal coefficients, the signal differences are twice as small.We also present that the differences in the spherical harmonic coefficients cause differences in global and local equivalent water height (EWH) changes. For example, the proposed merged solutions reduce root mean square scatter ofEWHby 5–15% comparing to individual solutions.
Rocznik
Strony
art. no. e42, 2023
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
  • Military University of Technology, Warsaw, Poland
autor
  • Military University of Technology, Warsaw, Poland
  • Military University of Technology, Warsaw, Poland
Bibliografia
  • 1. Abe, M., Kroner, C., Förste, C. et al. (2012). A comparison of GRACE-derived temporal gravity variations with observations of six European superconducting gravimeters. Geophys. J. Int., 191(2), 545–556. DOI: 10.1111/j.1365-246x.2012.05641.x.
  • 2. Ahi, G.O., and Shuanggen, J. (2019). Hydrologic mass changes and their implications in mediterranean- climate Turkey from GRACE measurements. Remote Sensing, 11(2), 120. DOI: 10.3390/rs11020120.
  • 3. Agnew, D.C., Alfe, D., Allen, R.M. et al. (2015). Treatise on Geophysics (Second Edition). ScienceDirect: Elsevier.
  • 4. Bettadpur, S. (2018). GRACE 327-742 (CSR-GR-12-xx) (Gravity Recovery and Climate Experiment), UTCSR Level–2 Processing Standards Document (Rev. 5.0, April 18, 2018), (For Level–2 Product Release 0006), Center for Space Research, The University of Texas at Austin.
  • 5. Chen, Q., Shen, Y., Chen, W. et al. (2019). An optimized short-arc approach: methodology and application to develop refined time series of Tongji-Grace2018 GRACE monthly solutions. J. Geophys. Res. Solid Earth, 124(6), 6010–6038. DOI: 10.1029/2018jb016596.
  • 6. Chen, Q., Shen, Y., Kusche, J. et al. (2020). High-resolution GRACE monthly spherical harmonic solutions. J. Geophys. Res. Solid Earth, 126(1), e2019JB018892. DOI: 10.1029/2019jb018892.
  • 7. Chen, J., Tapley, B., Tamisiea, M.E. et al. (2021). Error assessment of GRACE and GRACE Follow-On mass change. J. Geophys. Res. Solid Earth, 126(9), e2021JB022124. DOI: 10.1029/2021JB022124.
  • 8. Chisanga, Ch.B., Mubanga, K.H., Sichigabula, H. et al. (2022). Modelling climatic trends for the Zambezi and Orange River Basins: implications on water security. Water Clim. Change, 13(3), 1275–1296. DOI: 10.2166/wcc.2022.308.
  • 9. Ciavarella, A., Cotterill, D., Stott, P. et al. (2021). Prolonged Siberian heat of 2020 almost impossible without human influence. Clim. Change, 166, 9. DOI: 10.1007/s10584-021-03052-w.
  • 10. CRED (2019). Disasters in Africa: 20 Year Review (2000–2019). Cred Crunch Newsletter, Issue No. 56.
  • 11. Dahle, C., Flechtner, F., Murböck, M. et al. (2018). GRACE 327-743 (Gravity Recovery and Climate Experiment), GFZ Level–2 Processing Standards Document for Level–2 Product Release 06 (Rev. 1.0, October 26, 2018), (Scientific Technical Report STR – Data; 18/04), Potsdam: GFZ German Research Centre for Geosciences. DOI: 10.2312/GFZ.b103-18048.
  • 12. Dahle, C., Flechtner, F., Murböck, M. et al. (2019). GRACE-FO D-103919 (Gravity Recovery and Climate Experiment Follow-On), GFZ Level–2 Processing Standards Document for Level–2 Product Release 06 (Rev. 1.0, June 3, 2019), (Scientific Technical Report STR – Data; 19/09), Potsdam: GFZ German Research Centre for Geosciences. DOI: 10.2312/GFZ.b103-19098.
  • 13. Espinoza, J.C., Segura, H., Ronchaili, J. et al. (2016). Evolution of wet-day and dry-day frequency in the western Amazon basin: Relationship with atmospheric circulation and impacts on vegetation. Water Resour. Res., 52, 11, 8546–8560. DOI: 10.1002/2016WR019305.
  • 14. Espinoza, J.-C., Marengo, J.A., Schongart, J. et al. (2022). The new historical flood of 2021 in the Amazon River compared to major floods of the 21st century: Atmospheric features in the context of the intensification of floods. Weather Clim. Extremes, 100406. DOI: 10.1016/j.wace.2021.100406.
  • 15. Ferreira, O.P., Gonçalves, M.L.N. and Oliveira, P.R. (2013). Convergence of the Gauss–Newton method for convex composite optimization under a majorant condition. SIAM J. Optim., 23(3), 1757–1783. DOI: 10.48550/arXiv.1107.3796.
  • 16. Getirana, A., Kumar, S., Girotto, M. et al. (2017). Rivers and floodplains as key components of global terrestrial water storage variability. Geophys. Res. Lett., 44, 10359–10368. DOI: 10.1002/2017GL074684.
  • 17. Gomes, M.S., de Albuquerque Cavalcanti, I.F., and Müller, G.V. (2021). 2019/2020 drought impacts on South America and atmospheric and oceanic influences. Weather Clim. Extremes, 100404. DOI: 10.1016/j.wace.2021.100404.
  • 18. Grigorieva, E.A., and Livenets, A.S. (2022). Risks to the Health of Russian Population from Floods and Droughts in 2010–2020: A Scoping Review. Clim., 10(3), 37. DOI: 10.3390/cli10030037.
  • 19. Gruber, T., Bamber, J.L., Bierkens, M.F.P. et al. (2011). Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Sys. Sci. Data Discussions, 4(1), 27–70. DOI: 10.5194/essdd-4-27-2011.
  • 20. Han, S.-C., Shum, C.K., Jekeli, C. et al. (2005). Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys. J. Int., 163(1), 18–25. DOI: 10.1111/j.1365-246X.2005.02756.x.
  • 21. Higgisson, W., Cobb, A., Tschierchke, A. et al. (2022). The Role of Environmental Water and Reedbed Condition on the Response of Phragmites australis Reedbeds to Flooding. Remote Sens., 14(8), 1868. DOI: 10.3390/rs14081868.
  • 22. Hong, H., Sun, J., and Wang, H. (2022). Interannual Variations in Summer Extreme Precipitation Frequency over Northern Asia and Related Atmospheric Circulation Patterns. J. Hydrometeor., 23(4), 619–636. DOI: 10.1175/JHM-D-21-0177.1.
  • 23. Ince, E.S., Barthelmes, F., Reißland, S. et al. (2019). ICGEM -15 years of successful collection and distribution of global gravitational models, associated services and future plans. Earth Syst. Sci. Data, 11, 647–674. DOI: 10.5194/essd-11-647-2019.
  • 24. Jean, Y., Meyer, U., and Jäggi, A. (2018). Combination of GRACE monthly gravity field solutions from different processing strategies. J. Geod., 92, 1313–1328. DOI: 10.1007/s00190-018-1123-5.
  • 25. Jensen, L., Eicker, A., Dobslaw, H. et al. (2020). Emerging Changes in Terrestrial Water Storage Variability as a Target for Future Satellite Gravity Missions. Remote Sens., 12(23), 3898. DOI: 10.3390/rs12233898.
  • 26. Jekeli, C. (1981). Alternative methods to smooth the Earth’s gravity field. Tech. Rep., 327, Department of Geodetic Science and Surveying, Ohio State Univ., Columbus, OH.
  • 27. Landerer, F.W., Flechtner, F.M., Save, H. et al. (2020). Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophys. Res. Lett., 47, e2020GL088306. DOI: 10.1029/2020GL088306.
  • 28. Lasser, M., Meyer, U., Arnold, D. et al. (2020). AIUB-GRACE-FO-operational – Operational GRACE Follow-On monthly gravity field solutions. DOI: 10.5880/ICGEM.2020.001.
  • 29. Lemoine, J-M, Biancale, R., Reinquin, F. et al. (2019). CNES/GRGS RL04 Earth gravity field models, from GRACE and SLR data. DOI: 10.5880/ICGEM.2019.010.
  • 30. Lenczuk, A., Leszczuk, G., Klos, A. et al. (2020). Comparing variance of signal contained in the most recent GRACE solutions. Geod. Cartogr., 69(1), 19–37. DOI: 10.24425/gac.2020.131084.
  • 31. Meyer, U., Jean, Y., Kvas, A. et al. (2019). Combination of GRACE monthly gravity fields on the normal equation level. J. Geod., 93, 1645–1658. DOI: 10.1007/s00190-019-01274-6.
  • 32. Meyer, U., Lasser, M., Jaeggi, A. et al. (2020). International Combination Service for Time-variable Gravity Fields (COST-G) Monthly GRACE-FO Series. V. 01. GFZ Data Services. DOI: 10.5880/ICGEM. COST-G.002.
  • 33. Meyer-Gürr, T, Behzadpur, S., Ellmer, M. et al. (2018). ITSG-Grace2018 – Monthly, Daily and Static Gravity Field Solutions from GRACE. DOI: 10.5880/ICGEM.2018.003.
  • 34. McBride, Ch.M., Kruger, A.C., and Dyson, L. (2020). Changes in extreme daily rainfall characteristics in South Africa: 1921–2020. Weather Clim. Extremes, 38, 1000517. DOI: 10.1016/j.wace.2022.100517.
  • 35. Moon, T.A., Tedesco, M., Box, J.E. et al. (2020). Greenland Ice Sheet. Arctic Report Card: Update for 2020. Retrieved February 2023 from https://arctic.noaa.gov/Report-Card/Report-Card-2020/ArtMID/7975/ArticleID/901/Greenland-Ice-Sheet.
  • 36. Muis, S., Haigh, I. D., Guimarães Nobre, G. et al. (2018). Influence of El Niño-Southern Oscillation on Global Coastal Flooding. Earth’s Future. DOI: 10.1029/2018ef000909.
  • 37. Nascimento, J.L., Silvestre, M.R., and Neto, J.L.S. (2020). Trends and rainfall tropicalization in Paraná State, south of Brazil. Atmósfera, 33(1). DOI: 10.20937/atm.52441.
  • 38. Ouyang, Y., Zhang, J., Feng, G. et al. (2020). A century of precipitation trends in forest lands of the Lower Mississippi River Alluvial Valley. Sci. Rep., 10, 12802. DOI: 10.1038/s41598-020-69508-8.
  • 39. Petersen-Perlman, J.D., Aguilar-Barajas, I., and Megdal, Sh.B. (2022). Drought and groundwater management: Interconnections, challenges, and policyresponses. Current Opinion in Environmental Science and Health, 28, 100364. DOI: 10.1016/j.coesh.2022.100364.
  • 40. Prange, M., Wilke, T., and Wesselingh, F.P. (2020). The other side of sea level change. Commun. Earth Environ., 1, 69. DOI: 10.1038/s43247-020-00075-6.
  • 41. Reigber, C., Lühr, H. and Schwintzer, P. (2002). CHAMP mission status. Adv. Space Res., 30(2), 129–134. DOI: 10.1016/s0273-1177(02)00276-4.
  • 42. Ribes, A., Boe, J., Qasmi, S. et al. (2022). An updated assessment of past and future warming over France based on a regional observational constraint. Earth Sys. Dyn., 13(4), 1397–1415. DOI: 10.5194/esd-13-1397-2022.
  • 43. Ries, J., Bettadpur, S., Eanes, R. et al. (2016). The Combined Gravity Model GGM05C. GFZ Data Services. DOI: 10.5880/icgem.2016.002.
  • 44. Rodell, M., Famiglietti, J.S., Wiese, D.N. et al. (2018). Emerging trends in global freshwater availability. Nature, 557, 651–659 (2018). DOI: 10.1038/s41586-018-0123-1.
  • 45. Rummel, R. (2011). GOCE-the gravity steady-state ocean circulation explorer preface. J. Geod., 85(11), 747. DOI: 10.1007/s00190-011-0499-2.
  • 46. Sakumura, C. (2014). GRACE Technical Note 10 (CSR-GR-14-01) Gravity Recovery and Climate Experiment, Comparison of Degree 60 and Degree 96 Monthly Solutions, (May 5, 2014). Center for Space Research, The University of Texas at Austin.
  • 47. Sakumura, C, Bettadpur, S, and Bruinsma, S. (2014). Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models. Geophys. Res. Lett., 41(5), 1389–1397. DOI: 10.1002/2013GL058632.
  • 48. Sasgen, I, Martinec, Z., and Fleming, K. (2007) Wiener optimal combination and evaluation of the Gravity Recovery and Climate Experiment (GRACE) gravity fields over Antarctica. J. Geophys. Res. Solid Earth, 112, B04401. DOI: 10.1029/2006JB004605.
  • 49. Save, H., Bettadpur, S., Tapley, B.D. (2016). High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth, 121(10), 7547–7569. DOI: 10.1002/2016jb013007.
  • 50. Save, H. (2019). GRACE Follow-On (CSR-GRFO-19-01 (GRACE-FO D-103920)) (Gravity Recovery and Climate Experiment Follow-On), CSR Level–2 Processing Standards Document (Rev. 1.1, June 06, 2019), (For Level–2 Product Release 06), Center for Space Research, The University of Texas at Austin.
  • 51. Schmied, H.M., Cáceres, D., Eisner, S. et al. (2021). The global water resources and use model WaterGAP v2.2d: model description and evaluation. Geosci. Model Dev., 14(2), 1037–1079. DOI: 0.5194/gmd-14-1037-2021.
  • 52. Sun, Y., Riva, R., and Ditmar, P. (2016). Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J. Geophys. Res. Solid Earth, 121. DOI: 10.1002/2016JB013073.
  • 53. Svehla, D. (2018). Geomatrical Theory of Satellite Orbits and Gravity Field. Doctoral Thesis accepted by the Technische Universität München, Munich, Germany. Section 28.7. Temporal Variations in the Orientation of the Tri-Axial Earth’s Ellipsoid and Low-Degree Sectorial Harmonics, 469–476.
  • 54. Tapley, B.D., Bettadpur, S., Watkins, M. et al. (2004). The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett., 31, L09607. DOI: 10.1029/2004GL019920.
  • 55. Tegel, W., Seim, A., Skiadaresis, G. et al. (2020). Higher groundwater levels in western Europe characterize warm periods in the Common Era. Sci. Rep., 10, 16284. DOI: 10.1038/s41598-020-73383-8.
  • 56. Wahr, J., Molenaar, M., and Bryan F. (1998). Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103, 30205–30229. DOI: 10.1029/98JB02844.
  • 57. Watkins, M.M., Gruber, T., and Bettadpur, S. (2000). Science data system development plan. Tech. Rep. 327–710, GRACE Mission. Retrieved January 30, 2023, from ftp://podaac.jpl.nasa.gov/allData/grace/docs/sds_dev_plan_c.pdf.
  • 58. van Oldenborgh, G.J., Krikken, F., Lewis, S. et al. (2021). Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci., 21, 941–960. DOI: 10.5194/nhess-21-941-2021.
  • 59. Yuan, D.-N. (2018). GRACE 327-744 (Gravity Recovery and Climate Experiment), JPL Level–2 Processing Standards Document, For Level–2 Product Release 06 (June 1, 2018), Jet Propulsion Laboratory, California Institute of Technology.
  • 60. Yuan, D.-N. (2019). GRACE Follow-On (JPL D-103921) (Gravity Recovery and Climate Experiment Follow-On), JPL Level–2 Processing Standards Document, For Level–2 Product Release 06 (May 28, 2019), Jet Propulsion Laboratory, California Institute of Technology.
  • 61. Yuan, S., Bao, F., Zhang, X. et al. (2022). Severe Biomass-Burning Aerosol Pollution during the 2019 Amazon Wildfire and Its Direct Radiative-Forcing Impact: A Space Perspective from MODIS Retrievals. Remote Sens., 14(9), 2080. DOI: 10.3390/rs14092080.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffa6dc88-8147-4419-94cf-c642f3a1357a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.